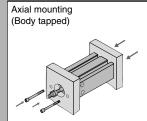
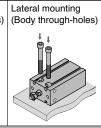
Free Mount Cylinder

Series CU

A space-saving air cylinder with multiple surfaces capable of mounting directly. Offered in rich variations.



Space-saving


The multiple surface direct mounting with a square body and no brackets allows the freedom of the mounting surface.

This enables space-saving designs for equipment.

Mounting

Series Variations				
Series	Action	Rod	Bore size (mm)	Page
Standard	Double acting	Single rod		483
Series CU	Bodbie dolling	Double rod		490
	Single acting	Single rod (Spring return/Extend)		495
Non-rotating	Double acting	Single rod		502
Series CUK	Double acting	Double rod		506
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Single acting	Single rod (Spring return/Extend)	6, 10, 16, 20, 25, 32	510
Long stroke Series CU	Double acting	Single rod	6, 10, 16, 20, 23, 32	516
Long stroke, Non-rotating rod Series CUK	Double acting	Single rod		520
With air cushion Series CU-A	Double acting	Single rod	20, 25, 32	524
For vacuum Series ZCUK	Double acting	Single rod	10, 16, 20, 25, 32	533

CUJ

CU CQS

CQ2

RQ

CQM MU

D-□ -X□

Individual Technical

Combinations of Standard Products and Made

Series CU

- ●: Standard
- O: Made to Order specifications
- ○: Special product (Contact SMC for details.)
- —: Not available

Series		CU					
		(Standard)		1)			
Action/	Double	acting	Single acting	Double	acting	Single acting	
Туре	Single rod	Double rod	Single rod	Single rod	Double rod	Single rod	

Symbol	Specification	Applicable bore size			ø6 to	ø32			
Standard	Standard		•	•	•	•	•	•	
D	Built-in magnet	ø6 to ø32	•	•	•	•	•	•	
10-, 11-, 21-, 22-	Clean series	ø6 to ø25	•	_	_	_	_	_	
20-	Copper and Fluorine-free	ø6 to ø32	•	0	0	•	0	0	
XB6	Heat-resistant cylinder (–10 to 150 °C)		0	0	_	0	0	_	
XB7	Cold-resistant cylinder (–40 to 70 °C)		0	0	_	0	0	_	
XB9	Low-speed cylinder (5 to 50 mm/s)		0	0	_	0	0	_	
XB13	Low-speed cylinder (5 to 50 mm/s)	ø6 to ø32	0	0	_	0	0	_	
XC19	Intermediate stroke (5 mm spacer)		0	0	_	0	0	_	
XC22	Fluororubber seals		0	0	0	0	0	0	
XC34	Rod not extending beyond non-rotating plate		_	_	_	0	0	0	
	at Desumation No. 2 for law appeal culinders				'				

Note) Refer to Best Pneumatics No. 3 for low-speed cylinders.

to Order Specifications

Series CU

CU (Long stroke) Double acting		(Long stroke,	Non-rotating)	CU-A (Air cushion)	ZCUK (For vacuum)	CUX (Low-speed cylinder) Note) Double acting
Single rod				Single rod	Single rod	Single rod
	ø6 to	ø32		ø20 to ø32	ø10 t	o ø32
•	•	•	•	•	•	•
•	•	•	•	•	•	•
_	_		_		_	(ø16 or more)
•	0	•	0	0	0	_
0	0	0	0	_	0	_
0	0	0	0		0	_
0	0	0	0	_	0	_
©	0	0	0	_	0	_
©	0	0	0	_	0	0
0	0	0	0	_	0	_
_	_	0	0	_	0	_
	Double Single rod	Double rod Single rod Double rod ø6 to ø6 to	Double acting Double rod Single rod single rod ∞6 to ∞32 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	Double acting Single rod Double rod Double rod Ø6 to Ø32 ● ● ● ● <td>Double acting Double rod Single rod Double rod Single rod 86 to 832 \$\pi 20\$ to \$\pi 32\$ \$\pi 20\$ to \$\pi 32\$ \$\pi\$ \$\pi\$ \$\pi\$ \$\pi\$ \$\pi\$ \$\pi\$ \$\pi\$</td> <td> Double acting Double acting Single rod Single ro</td>	Double acting Double rod Single rod Double rod Single rod 86 to 832 \$\pi 20\$ to \$\pi 32\$ \$\pi 20\$ to \$\pi 32\$ \$\pi\$ \$\pi\$ \$\pi\$ \$\pi\$ \$\pi\$ \$\pi\$ \$\pi\$	Double acting Double acting Single rod Single ro

CUJ

CU

CQS

CQ2

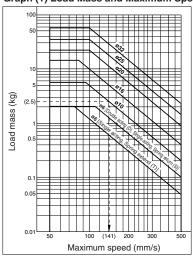
RQ

CQM

MU

Individual -X□

Technical data


Precautions on Free Mount

1. Operating speed

Make sure to connect a speed controller to the cylinder and adjust its speed to 500 mm/s or less.

If a load is to be attached to the end of the rod, adjust the speed to the maximum speed shown in Graph (1) or less, in accordance with the added mass.

Graph (1) Load Mass and Maximum Speed

How to read the graph

• Using the CU10 to drive a load weighing 2.5 kg: From the vertical axis in the graph on the left, extend the horizontally from 2.5 kg., and drop down from the point at which it intersects with the tube bore ø10. The maximum speed will be 141 mm/s.

(N)

2. Rod end allowable lateral load

Make sure that the lateral load that is applied to the rod end will be no more than the values shown in the tables.

The tables show the value for a single rod. For double rods, please contact SMC.

Standard Double Acting, Single Rod

Without auto switch: CU□-□D

N /	lodel						Str	oke (n	nm)					
IVI	louei	5	10	15	20	25	30	40	50	60	70	80	90	100
Cl	J6	0.085	0.075	0.068	0.061	0.056	0.052	0.045	0.039	0.035	_	_	_	_
Cl	J10	0.34	0.30	0.27	0.25	0.23	0.21	0.18	0.16	0.15	_	_	_	_
Cl	J16	0.69	0.61	0.55	0.50	0.46	0.43	0.37	0.33	0.29	_	_	_	_
Cl	J20	2.2	2.0	1.8	1.6	1.5	1.4	1.2	1.1	1.0	0.92	0.85	0.78	0.73
CL	J25	3.5	3.2	3.0	2.7	2.6	2.4	2.1	1.9	1.7	1.6	1.4	1.3	1.2
Cl	J32	5.4	4.9	4.6	4.3	4.0	3.8	3.3	3.0	2.8	2.5	2.3	2.2	2.0

With auto switch: CDU□-□D

Model						Str	oke (n	nm)					
Model	5	10	15	20	25	30	40	50	60	70	80	90	100
CDU6	0.085	0.075	0.068	0.061	0.056	0.052	0.045	0.039	0.035	_	_	_	_
CDU10	0.34	0.30	0.27	0.25	0.23	0.21	0.18	0.16	0.15	_	_	_	_
CDU16	0.99	0.89	0.81	0.74	0.69	0.64	0.56	0.50	0.45	_	_	_	_
CDU20	3.0	2.7	2.5	2.3	2.1	2.0	1.8	1.6	1.4	1.3	1.2	1.1	1.0
CDU25	4.7	4.3	4.0	3.7	3.5	3.2	2.9	2.6	2.4	2.2	2.0	1.9	1.7
CDU32	7.1	6.6	6.1	5.7	5.4	5.1	4.6	4.1	3.8	3.5	3.2	3.0	2.8

Non-rotating Rod Type

Without auto switch: CUK□-□D

Model						Str	oke (n	nm)					
iviodei	5	10	15	20	25	30	40	50	60	70	80	90	100
CUK6	0.075	0.068	0.061	0.056	0.052	0.048	0.042	0.037	0.033	_	_	_	_
CUK10	0.30	0.27	0.25	0.23	0.21	0.20	0.17	0.15	0.14	_	_	_	_
CUK16	0.55	0.50	0.46	0.43	0.40	0.37	0.33	0.29	0.26	_	_	_	_
CUK20	1.8	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.92	0.85	0.78	0.73	0.68
CUK25	3.0	2.7	2.6	2.4	2.2	2.1	1.9	1.7	1.6	1.4	1.3	1.2	1.2
CUK32	4.3	4.0	3.8	3.5	3.3	3.2	2.9	2.6	2.4	2.2	2.1	2.0	1.8

With auto switch: CDUK□-□D

NAI - I						Str	oke (n	nm)					
Model	5	10	15	20	25	30	40	50	60	70	80	90	100
CDUK6	0.075	0.068	0.061	0.056	0.052	0.048	0.042	0.037	0.033	_	_	_	_
CDUK10	0.30	0.27	0.25	0.23	0.21	0.20	0.17	0.15	0.14	_	_	_	_
CDUK16	0.81	0.74	0.69	0.64	0.60	0.56	0.50	0.45	0.41	_	_	_	_
CDUK20	2.5	2.3	2.1	2.0	1.9	1.8	1.6	1.4	1.3	1.2	1.1	1.0	1.0
CDUK25	4.0	3.7	3.5	3.2	3.1	2.9	2.6	2.4	2.2	2.0	1.9	1.7	1.6
CDUK32	5.7	5.4	5.1	4.8	4.6	4.4	4.0	3.6	3.4	3.1	2.9	2.7	2.6

Single Acting, Spring Return (S)

Without auto switch: CU□-□S (N)

Model	Str	oke (n	nm)
Model	5	10	15
CU6	0.19	0.17	0.15
CU10	0.66	0.59	0.60
CU16	1.4	1.3	1.3
CU20	4.7	4.2	4.4
CU25	6.8	6.2	6.5
CU32	10	9.8	10

With auto switch: CDU□-□S (N)

Model	Str	oke (n	nm)
Model	5	10	15
CDU6	0.17	0.15	0.13
CDU10	0.66	0.59	0.60
CDU16	1.6	1.5	1.5
CDU20	5.3	4.8	4.9
CDU25	7.6	7.0	7.2
CDU32	12	11	11

Non-rotating Rod Type Single Acting, Spring Return (S) Without auto switch: CUK□-□S(N)

Model	Str	oke (n	nm)
Model	5	10	15
CUK6	0.17	0.15	0.14
CUK10	0.59	0.54	0.56
CUK16	1.1	1.0	1.1
CUK20	3.9	3.6	3.8
CUK25	5.7	5.3	5.7
CUK32	8.5	7.9	8.6

With auto switch: CDUK□-□S (N)

Model	Str	oke (n	nm)
Model	5	10	15
CDUK6	0.15	0.13	0.12
CDUK10	0.59	0.54	0.56
CDUK16	1.3	1.2	1.3
CDUK20	4.4	4.1	4.3
CDUK25	6.5	6.1	6.4
CDUK32	9.7	9.1	9.6

Single Acting, Spring Extend (T)

Without auto switch: CU - T(N)

			٠.			
Model	Stroke (mm)					
Model	5	10	15			
CU6	0.067	0.059	0.052			
CU10	0.29	0.26	0.24			
CU16	0.99	0.89	0.81			
CU20	2.2	2.0	1.8			
CU25	3.5	3.2	3.0			
CU32	5.4	4.9	4.6			

With auto switch: CDU□-□T (N)

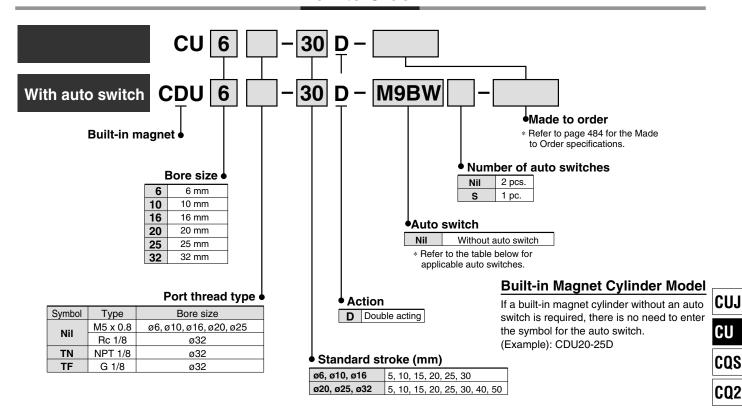
Model	Stroke (mm)					
Model	5	10	15			
CDU6	0.062	0.055	0.049			
CDU10	0.29	0.26	0.24			
CDU16	0.99	0.89	0.81			
CDU20	3.0	2.7	2.5			
CDU25	4.7	4.3	4.0			
CDU32	7.1	6.6	6.1			

Non-rotating Rod Type Single Acting, Spring Extend (T) Without auto switch: CUK□-□T (N)

Model	Stroke (mm)					
iviodei	5	10	15			
CUK6	0.059	0.052	0.047			
CUK10	0.26	0.24	0.22			
CUK16	0.81	0.74	0.69			
CUK20	1.8	1.6	1.5			
CUK25	3.0	2.7	2.6			
CUK32	4.3	4.0	3.8			

With auto switch: CDUK□-□T(N)

111111 4410 011110111 050110 01 (14)								
Model	Stroke (mm)							
Model	5	10	15					
CDUK6	0.055	0.049	0.044					
CDUK10	0.26	0.24	0.22					
CDUK16	0.81	0.74	0.69					
CDUK20	2.5	2.3	2.1					
CDUK25	4.0	3.7	3.5					
CDUK32	5.7	5.4	5.1					



(N)

Free Mount Cylinder Double Acting, Single Rod Series C ø6, ø10, ø16, ø20, ø25, ø32

How to Order

Applicable Auto Switches/Refer to pages 1263 to 1371 for further information on auto switches.

			Ħ			_oad voltad	70	Auto switc	h model	Lead	wiro I	onath	(m)								
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)		DC		Perpendicular	In-line	0.5	1	3	5	Pre-wired connector	Applica	ble load					
				3-wire (NPN)		5 V 10 V		M9NV	M9N	•	•	•	0	0	IC						
Solid state switch				3-wire (PNP)	5 V, 12 V			M9PV	M9P	•	•	•	0	0	circuit						
sta		Grommet	V	2-wire	24 V 12 V 5 V, 12 V	12 V		12 V		M9B	•	•	•	0	0	_	Relay,				
ᅙᇎ	5	Grommet	Yes	3-wire (NPN)							1 1		M9NWV	M9NW	•	•	•	0	0	IC	PLC
Sol	Diagnostic indication			3-wire (PNP)			5 V, 12 V		M9PWV	M9PW	•	•	•	0	0	circuit					
	(2-color indication)			2-wire		12 V	1	M9BWV	M9BW	•	•	•	0	0	_						
Reed		Grommet	Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	_	_	IC circuit	_					
.ĕ.		Gioillilet		2-wire	24 V	1 V 12 V 100	100 V	A93V	A93	•	_	•		_		Relay,					
0,			No	2-WIIE	24 V	12 V	100 V or less	A90V	A90			•	_		IC circuit	PLC					

^{*} Lead wire length symbols: 0.5 m Nil (Example) M9NW 1 m M (Example) M9NWM

* Auto switches are shipped together but not assembled.

Technical

RQ

CQM

MU

³ m L (Example) M9NWL 5 m Z (Example) M9NWZ

^{*} Solid state auto switches marked with "O" are produced upon receipt of order.

^{*} Since there are applicable auto switches other than the above, refer to page 538 for details.

^{*} For detail about auto switches with pre-wired connector, refer to pages 1328 to 1329.

Series CU

Specifications

Bore size (mm)	6	10	16	20	25	32
Fluid				Air		
Proof pressure			1.05	МРа		
Maximum operating pressure			0.7	MPa		
Minimum operating pressure	0.12 MPa 0.06 MPa 0.05 MPa					
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing) With auto switch: -10 to 60°C (No freezing)					
Lubrication	Non-lube					
Piston speed	50 to 500 mm/s					
Cushion	Rubber bumper					
Rod end thread	Male thread					
Stroke length tolerance			+1.0 0	mm		

JIS Symbol Double acting, Single rod

Standard Stroke

Bore size (mm)	Standard stroke (mm)			
6, 10, 16	5, 10, 15, 20, 25, 30			
20, 25, 32	5, 10, 15, 20, 25, 30, 40, 50			

For "Long Stroke", refer to page 516.

Made to Order Specifications (For details, refer to pages 1395 to 1498.)

Symbol	Specifications				
-XB6 Heat resistant (-10 to 150°C)					
-XB7	Cold resistant (-40 to 70°C)				
-XB9	Low speed (10 to 50 mm/s)				
-XB13	Low speed (5 to 50 mm/s)				
-XC19	Intermediate stroke (5 mm spacer)				
-XC22	XC22 Fluororubber seals				

Theoretic	Theoretical Output								
Bore size Rod size		Operating	Piston area	Operating pressure (MPa)					
(mm)	(mm)	direction	(mm²)	0.3	0.5	0.7			
6	3	OUT	28.3	8.49	14.2	19.8			
8	3	IN	21.2	6.36	10.6	14.8			
10	4	OUT	78.5	23.6	39.3	55.0			
10	4	IN	66.0	19.8	33.0	46.2			
16	6	OUT	201	60.3	101	141			
16		IN	172	51.6	86.0	121			
20	8	OUT	314	94.2	157	220			
20		IN	264	79.2	132	185			
25	10	OUT	491	147	246	344			
25	10	IN	412	124	206	288			
32	12	OUT	804	241	402	563			
32	12	IN	691	207	346	454			

Tightening Torque/ When mounting Series CU, refer to the below table.

	0 1	
Bore size (mm)	Hexagon socket head cap screw dia.	Proper tightening torque (N·m)
6, 10	M3	1.08 ±10%
16	M4	2.45 ±10%
20, 25	M5	5.10 ±10%
32	M6	8.04 ±10%

Mass/(): De	notes the ι	alues with	n D-A93.					(g)		
Model	Cylinder stroke (mm)									
Iviodei	5	10	15	20	25	30	40	50		
C(D)U6-□D	22 (27)	25 (35)	28 (38)	31 (41)	34 (44)	37 (47)	_	_		
C(D)U10-□D	36 (41)	40 (50)	44 (54)	48 (58)	52 (62)	56 (66)	_	_		
C(D)U16-□D	50 (75)	56 (86)	62 (92)	68 (98)	74 (104)	80 (110)	_	_		
C(D)U20-□D	95 (128)	106 (143)	117 (154)	128 (165)	139 (176)	150 (187)	172 (209)	194 (231)		
C(D)U25-□D	176 (230)	193 (252)	210 (269)	227 (286)	244 (303)	261 (320)	295 (354)	329 (388)		
C(D)U32-□D	262 (335)	286 (364)	310 (388)	334 (412)	358 (436)	382 (460)	430 (508)	478 (556)		

 $[\]ast$ For the auto switch mass, refer to page 1263.

Copper and Fluorine-free

20-CU Bore size - Stroke D

Copper and Fluorine-free

This cylinder eliminates any influences of copper ions or fluoro resins on color CRTs. Copper materials have been nickel plated or replaced with non-copper materials to prevent the generation of copper ions.

Minimum Operating Pressure

(MPa)

Bore size (mm)	6	10, 16	20, 25, 32
Minimum operating pressure	0.12	0.06	0.05

Specifications

Action	Double acting, Single rod
Bore size (mm)	6, 10, 16, 20, 25, 32
Maximum operating pressure	1.05 MPa
Cushion	Rubber bumper
Stroke	Same as standard (Refer to page 484.)
Auto switch	Mountable

Low-speed Cylinder

CU X Mounting bracket Bore size - Stroke

Low-speed Cylinder

Smooth operation with a little sticking and slipping at low speed. Can start smoothly with a little ejection even after being rendered for hours.

Specifications

opcomoations												
Bore size (mm)	10	16	20	25	32							
Fluid	Air											
Proof pressure	1.05 MPa											
Max. operating pressure	0.7 MPa											
Ambient and fluid	V	Without auto switch: -10 to 70°C (No freezing)										
temperature		With auto swit	ch: -10 to 60°0	C (No freezing)								
Lubricant		Not a	pplicable (Non	-lube)								
Piston speed	ø10, ø16: 1 to 300 mm/s											
riston speed	ø20 to ø32: 0.5 to 300 mm/s											
Cushion		Rubber	bumper on bot	h ends								
Rod end thread	Male thread											
Stroke length tolerance	+1.0 Note) 0											
Mounting bracket			Basic									

Note) Hysteresis +1.0

Minimum Operating Pressure

Bore size (mm)	10	16	20	25	32
Minimum Operating Pressure (MPa)	0.06	0.06	0.05	0.05	0.05

Refer to Best Pneumatics No. 3 for details.

D
-X

Individual

Technical

CUJ

CU

CQS

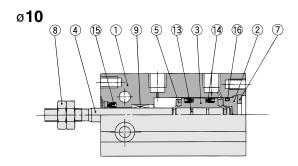
CQ2

RQ

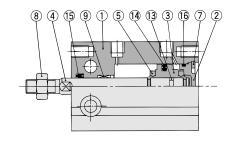
CQM

MU

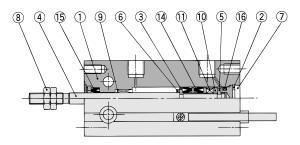

485

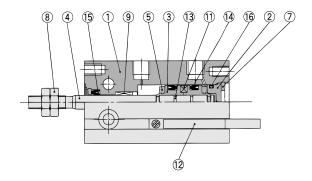


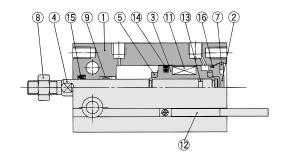
Series CU


Construction

ø6






ø16 to ø32

With auto switch

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Brass	ø6 to ø10, Electroless nickel plated
2	neau cover	Aluminum alloy	ø16 to ø32, Chromated
3	Piston	Brass	ø6 to ø10
3	PISION	Aluminum alloy	ø16 to ø32, Chromated
4	Piston rod	Stainless steel	
5	Bumper A	Urethane	
6	Bumper B	Urethane	
7	Retaining ring	Carbon tool steel	Phosphate coated

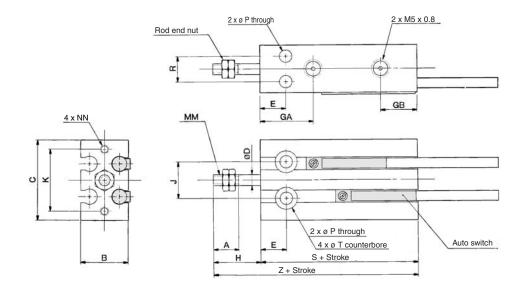
Component Parts

No.	Description	Material	Note
8	Rod end nut	Carbon steel	Nickel plated
9	Bushing	Oil-impregnated sintered alloy	
10	Magnet holder	Brass	ø6
11	Magnet	_	
12	Auto switch	_	
13	Piston gasket		
14*	Piston seal	NBR	
15*	Rod seal	NDIT	
16*	Gasket		

Replacement Parts: Seal Kit

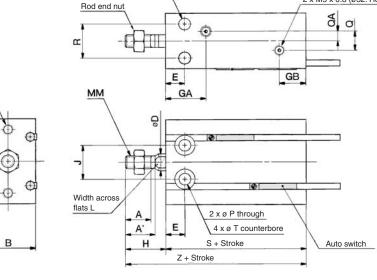
Bore size (mm)	Kit no.	Contents
10	CU10D-PS	
16	CU16D-PS	
20	CU20D-PS	Set of nos. above 14, 15, 16
25	CU25D-PS	
32	CU32D-PS	

* Seal kit includes 14, 15, 16. Order the seal kit, based on each bore size.


Seal kit includes a grease pack (10 g).

Order with the following part number when only the grease pack is

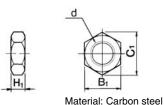
Grease pack part number: GR-S-010 (10 g)


Dimensions: Double Acting, Single Rod

ø6, ø10

2 x ø P through

Rod End Nut/Accessory


25

32

NT-02

NT-03

2 x M5 x 0.8 (ø32: Rc 1/8)

Part no.	Applicable bore size (mm)	d	Нı	B₁	C ₁
NTP-006	6	M3 x 0.5	1.8	5.5	6.4
NTP-010	10	M4 x 0.7	2.4	7	8.1
NTJ-015A	16	M5 x 0.8	4	8	9.2
NT-015A	20	M6 x 1.0	5	10	11.5

M10 x 1.25 6

M8 x 1.25 5 13 15.0

17 19.6

																	(mm)
Bore size (mm)	Α	A'	В	С	D	E	GA	GB	н	J	К	L	ММ	NN	Р	Q	QA
6	7	_	13	22	3	7	15	10	13	10	17	_	M3 x 0.5	M3 x 0.5 depth 5	3.2	_	
10	10		15	24	4	7	16.5	10	16	11	18	_	M4 x 0.7	M3 x 0.5 depth 5	3.2	_	
16	11	12.5	20	32	6	7	16.5 ^{Note)}	11.5	16	14	25	5	M5 x 0.8	M4 x 0.7 depth 6	4.5	4	2
20	12	14	26	40	8	9	19	12.5	19	16	30	6	M6 x 1.0	M5 x 0.8 depth 8	5.5	9	4.5
25	15.5	18	32	50	10	10	21.5	13	23	20	38	8	M8 x 1.25	M5 x 0.8 depth 8	5.5	9	4.5
32	19.5	22	40	62	12	11	23	12.5	27	24	48	10	M10 x 1.25	M6 x 1.0 depth 9	6.6	13.5	4.5

Bore size	R	т	Without a	uto switch	With auto switch		
(mm)	l n	•	S	Z	S	Z	
6	7	6 depth 4.8	33	46	33	46	
10	9	6 depth 5	36	52	36	52	
16	12	7.6 depth 6.5	30	46	40	56	
20	16	9.3 depth 8	36	55	46	65	
25	20	9.3 depth 9	40	63	50	73	
32	24	11 depth 11.5	42	69	52	79	

Note) 5 stroke (CU16-5D): 14.5 mm

D- □
-X □
Individual

-**X**□

CUJ

CU

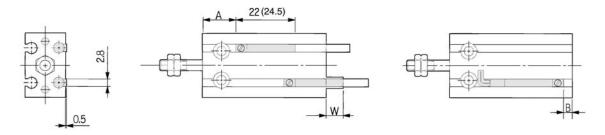
CQS

CQ2

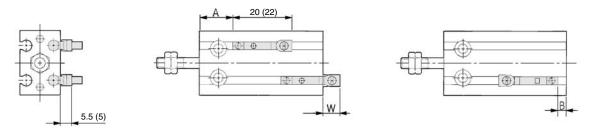
RQ

CQM

MU


Technical data

Series CU


Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

D-A9□ D-M9□ D-M9□W

(): Denotes the values of D-A93.

D-A9□V D-M9□V D-M9□WV

(): Denotes the values of D-A9□V.

									(mm)	
Bore size	D-A9	□, D-A 9	v□e	D-M9	□, D- M9	o□w	D-M9□V, D-M9□WV			
(mm)	Α	В	W	Α	В	W	Α	В	W	
6	13.5	-0.5	2.5 (5)	17.5	3.5	6.5	17.5	3.5	4.5	
10	12.5	3.5	-1.5 (1)	16.5	7.5	2.5	16.5	7.5	0.5	
16	16	4	-2 (0.5)	20	8	1.5	20	8	-0.5	
20	20	6	-4 (-1.5)	24	10	0	24	10	-2	
25	22.5	7	-5.5 (-3)	26.5	11	-1.5	26.5	11	-3.5	
32	23.5	8.5	-6.5 (-4)	27.5	12.5	-2.5	27.5	12.5	-4.5	

Note 1) Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation.

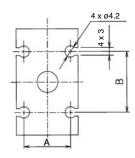
Note 2) Negative figures in the table W indicate an auto switch is mounted inward from the edge of the cylinder body.

Note 3) In the case of the 5 stroke or the 10 stroke, there are times in which the switch will not turn OFF or 2 switches will turn ON simultaneously due to their movement range. Therefore, set the position approximately 1 to 4 mm outward from the values given in the table above. Then, perform an operation inspection to make sure that the switches operate normally (if 1 switch is used, make sure that it turns ON and OFF properly; if 2 switches are used, make sure that both switches turn ON).

Note 4) () in column W is the dimensions of D-A93.

Operating Range

						(mm)
Auto switch model			Bore	size		
Auto switch model	6	10	16	20	25	32
D-A9□, A9□V	5	6	9	11	12.5	14
D-M9□, M9□V D-M9□W, M9□WV	3	4	5.5	7	7	7.5

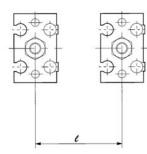

* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately ±30% dispersion). It may vary substantially depending on an ambient environment.

Minimum Stroke for Auto Switch Mounting

Minimum Stroke for Auto Switch Mounting (mm)										
No. of auto	Applicable auto switch									
switches mounted	D-A9□, D-A9□V	D-M9□, D-M9□V	D-M9□W, D-M9□WV							
1 pc.	5	5	5							
2 pcs.	10	5	10							

Auto Switch Groove Position

		(mm)
Bore size (mm)	Α	В
6	8.2	9
10	10.3	13
16	15	18
20	21	23
25	27	25
32	35	27


Caution on Proximity Installation

When free mounting cylinders equipped with auto switches are used, the auto switches could activate unintentionally if the installed distance is less than the dimensions shown in the table. Therefore, make sure to provide a greater clearance. Due to unavoidable circumstances, if they must be used with less distance than the dimensions given in the table, the cylinders must be shielded. Therefore, affix a steel plate or a magnetic shield plate (MU-S025) to the area on the cylinder that corresponds to the adjacent auto switch. (Please contact SMC for details.) Auto switches may malfunction if a shield plate is not used.

Dimensions of shield plate (MU-S025) that is sold separately are indicated as reference.

Material: Ferrite stainless steel, Thickness: 0.3 mm The product can be attached to the cylinder since the bottom side is a seal type.

Bore size (mm)	Mounting pitch ℓ (mm)
6	18
10	20
16	33
20	40
25	46
32	56

CUJ

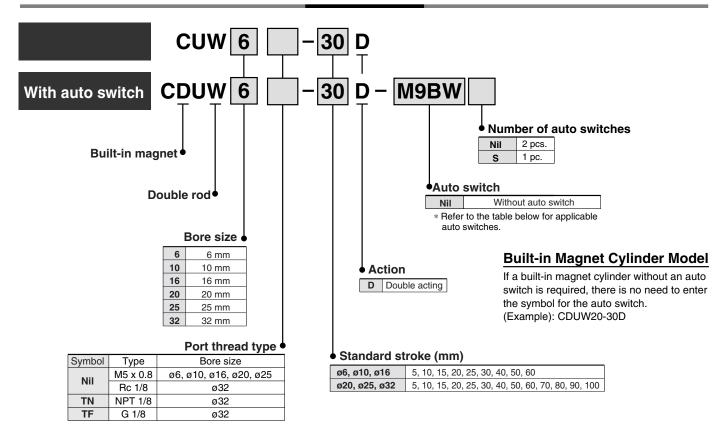
CQS

CQ2

RQ

CQM

MU


Individual -X□ Technical

Free Mount Cylinder Double Acting, Double Rod Series CUV ø6, ø10, ø16, ø20, ø25, ø32

How to Order

Applicable Auto Switches/Refer to pages 1263 to 1371 for further information on auto switches.

		Clastrias	ight	\A/:wim.er	L	oad voltag	je	Auto switc	h model	Lead	wire l	length	n (m)	Due mined			
Type	Special function	Electrical entry	Indicator light	Wiring (Output)		DC	AC	Perpendicular	In-line	0.5	1	3	5	Pre-wired connector	Applica	ble load	
		J ,	Indic	(Gaipai)			AC	reiperiulculai	111-11110	(Nil)	(M)	(L)	(Z)				
				3-wire (NPN)		5 V, 12 V		M9NV	M9N	•	•	•	0	0	IC		
_ g				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit		
Solid state switch		Grommet	V	2-wire	24 V	12 V		M9BV	M9B	•	•	•	0	0	_	Relay,	
ž E	Diama and a familia attack	iagnostic indication	1 1 1 1 1 1 1	Yes	3-wire (NPN)	24 V	5 V, 12 V		M9NWV	M9NW	•	•	•	0	0	IC	PLC
တိ	(2-color indication)			3-wire (PNP) 2-wire	3 V, 12 V		M9PWV	M9PW	•	•	•	0	0	circuit			
	(2-color indication)					12 V		M9BWV	M9BW	•	•	•	0	0	_		
_				3-wire		5 V		A96V	A96						IC		
tc e		Grommet	Yes ((NPN equivalent)		5 V		A90V	A90	•					circuit	_	
% ĕi	Reed switch				2-wire	24 V	12 V	100 V	A93V	A93	•	_	•	_		_	Relay,
				No	Z-WIIE	24 V	12 V	100 V or less	A90V	A90	•	-	•	-	_	IC circuit	PLC

^{*} Since there are applicable auto switches other than the above, refer to page 538 for details.

^{*} For detail about auto switches with pre-wired connector, refer to pages 1328 to 1329.

^{*} Auto switches are shipped together but not assembled.

Free Mount Cylinder Double Acting, Double Rod Series CUW

Specifications									
Bore size (mm)	6	10	16	20 25 32					
Fluid				Air					
Proof pressure			1.05	MPa					
Maximum operating pressure			0.7	MPa					
Minimum operating pressure	0.15 MPa	0.10	MPa	0.08 MPa					
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing)								
Ambient and naid temperature	With auto switch: -10 to 60°C (No freezing)								
Lubrication			Nor	n-lube					
Piston speed			50 to 5	00 mm/s					
Cushion	Rubber bumper								
Rod end thread	Male thread								
Stroke length tolerance			+ 1.0	^o mm					

Standard Stroke

Bore size (mm)	Standard stroke (mm)
6, 10, 16	5, 10, 15, 20, 25, 30, 40, 50, 60
20, 25, 32	5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100

Theoretical Output

Bore size	Rod size	Piston area	Operating pressure (MPa)			
(mm)	(mm)	(mm²)	0.3	0.5	0.7	
6	3	21.2	6.36	10.6	14.8	
10	4	66.0	19.8	33.0	46.2	
16	6	172	51.6	86.0	121	
20	8	264	79.2	132	185	
25	10	412	124	206	288	
32	12	691	207	346	484	

Mass/(): Denotes the values with D-A93.

111433/(). D.	SHOLES LITE	values wi	III D-A30.										(9)
Model		Stroke (mm)											
Wodel	5	10	15	20	25	30	40	50	60	70	80	90	100
C(D)UW6-□D	27 (32)	30 (40)	34 (44)	37 (47)	40 (50)	44 (54)	51 (61)	58 (68)	65 (75)	_	_	_	_
C(D)UW10-□D	44 (49)	49 (59)	53 (63)	58 (68)	62 (72)	67 (77)	76 (86)	85 (95)	94 (104)	_	_	_	_
C(D)UW16-□D	74 (99)	81 (111)	88 (118)	95 (125)	102 (132)	109 (139)	123 (153)	137 (167)	151 (181)	_	_	_	_
C(D)UW20-□D	132 (165)	145 (182)	158 (195)	171 (208)	184 (221)	197 (234)	223 (260)	250 (287)	275 (312)	301 (338)	327 (364)	353 (390)	379 (416)
C(D)UW25-□D	240 (294)	260 (319)	280 (339)	300 (359)	321 (380)	341 (400)	381 (440)	421 (480)	461 (520)	501 (560)	541 (600)	581 (640)	621 (680)
C(D)UW32-□D	365 (438)	394 (472)	422 (500)	451 (529)	479 (557)	508 (586)	586 (664)	622 (700)	679 (757)	736 (814)	793 (871)	850 (928)	907 (985)

^{*} For the auto switch mass, refer to page 1263.

Tightening Torque
When mounting Series CUW, refer to page 484.

Technical

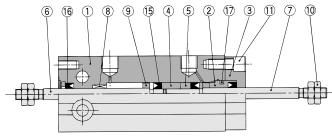
CUJ

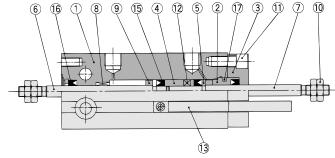
(N)

CQS

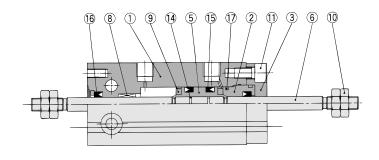
CU

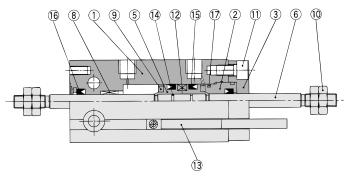
CQ2 RQ

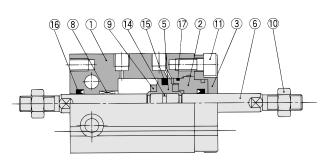

CQM MU

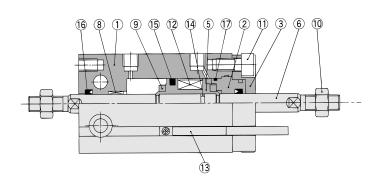

Series CUW

Construction


ø6


With auto switch




ø10

ø16 to 32

Component Parts

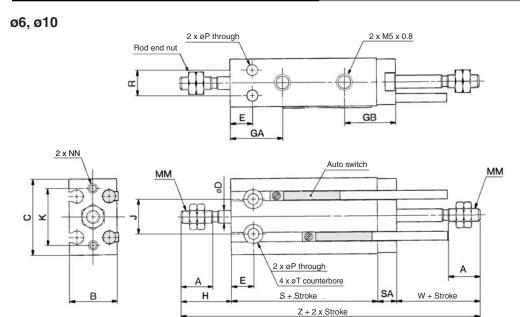
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Rod cover	Aluminum alloy	Chromated
3	Rod cover retainer	Aluminum alloy	Anodized
4	Piston	Brass	ø6
5	Piston	Brass	ø6, ø10
	PISION	Aluminum alloy	ø16 to ø32, Chromated
6	Piston rod	Stainless steel	
7	Piston rod	Stainless steel	ø6
8	Bushing	Oil-impregnated sintered alloy	

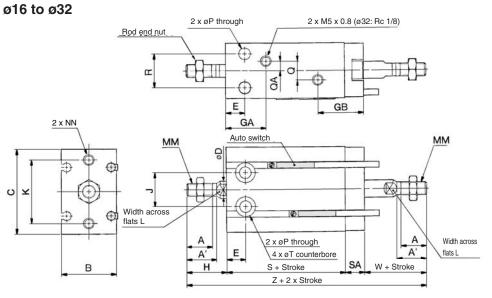
Component Parts

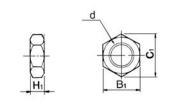
COIII	ponent i arts		
No.	Description	Material	Note
9	Bumper	Urethane	
10	Rod end nut	Carbon steel	Nickel plated
11	Hexagon socket head cap screw	Carbon steel	Nickel plated
12	Magnet	_	
13	Auto switch	_	
14	Piston gasket		
15*	Piston seal	NBR	
16*	Rod seal	חמאו	
17*	Gasket		

Replacement Parts: Seal Kit

	Bore size (mm) / Part no.									
	10	16	20	25	32					
Kit no.	CUW10D-PS	CUW16D-PS	CUW20D-PS	CUW25D-PS	CUW32D-PS					




^{*} Seal kit includes ⓑ, ⓑ, ⑰. Order the seal kit, based on each bore size.
* Seal kit includes a grease pack (10 g).
Order with the following part number when only the grease pack is needed.
Grease pack part number: GR-S-010 (10 g)


Free Mount Cylinder Double Acting, Double Rod Series CUW

Dimensions: Double Acting, Double Rod

Rod End Nut/Accessory

Material:	Carbon	steel
-----------	--------	-------

Part no.	Applicable bore size (mm)	d	Ηı	Bı	C ₁
NTP-006	6	M3 x 0.5	1.8	5.5	6.4
NTP-010	10	M4 x 0.7	2.4	7	8.1
NTJ-015A	16	M5 x 0.8	4	8	9.2
NT-015A	20	M6 x 1.0	5	10	11.5
NT-02	25	M8 x 1.25	5	13	15.0
NT-03	32	M10 x 1.25	6	17	19.6

Bore size (mm)	e A	A'	В	С	D	E	GA	GB	Н	J	K	L	ММ	NN	Р	Q	QA
6	7	_	13	22	3	7	15	16	13	10	17	_	M3 x 0.5	M3 x 0.5 depth 5	3.2	_	_
10	10	_	15	24	4	7	16.5	16	16	11	18	_	M4 x 0.7	M3 x 0.5 depth 5	3.2		_
16	11	12.5	20	32	6	7	16.5 Note)	19	16	14	25	5	M5 x 0.8	M4 x 0.7 depth 6	4.5	4	2
20	12	14	26	40	8	9	19	21.5	19	16	30	6	M6 x 1.0	M5 x 0.8 depth 8	5.5	9	4.5
25	15.5	18	32	50	10	10	21.5	22	23	20	38	8	M8 x 1.25	M5 x 0.8 depth 8	5.5	9	4.5
32	19.5	22	40	62	12	11	23	22.5	27	24	48	10	M10 x 1.25	M6 x 1.0 depth 9	6.6	13.5	4.5

Во	ore size	R	SA	-	w	Without a	uto switch	With auto switch		
	(mm)	n	SA	•	VV	S	Z	S	Z	
	6	7	6	6 depth 4.8	13	38	70	38	70	
	10	9	6	6 depth 5	16	36	74	36	74	
	16	12	7.5	7.6 depth 6.5	16	30	69.5	40	79.5	
	20	16	9	9.3 depth 8	19	36	83	46	93	
	25	20	9	9.3 depth 9	23	40	95	50	105	
	32	24	10	11 depth 11.5	27	42	106	52	116	

Note 1) 5 stroke (CUW16-5D): GA = 14.5

Note 2) The two chamfered positions for the double rod type are not identical.

Technical

CUJ

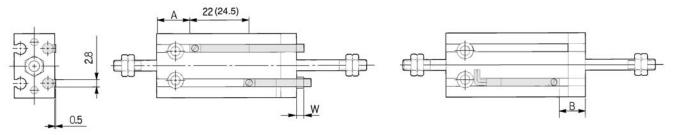
CU

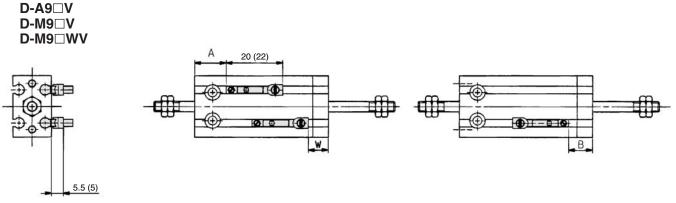
CQS

CQ2

RQ

CQM


MU


Series CUW

Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

D-A9□ D-M9□ D-M9□W

(): Denotes the values of D-A93.

(): Denotes the values of D-A9□V.

									()	
Bore size	D-A	9□, D-A 9	γ□V	D-M	9□, D- M9	9□W	D-M9□V, D-M9□WV			
(mm)	Α	В	W	Α	В	W	Α	В	W	
6	13.5	5.5	-3.5 (-1)	17.5	9.5	0.5	17.5	9.5	-1.5	
10	12.5	9.5	-7.5 (-5)	16.5	13.5	-3.5	16.5	13.5	-5.5	
16	16	11.5	-9.5 (-7)	20	15.5	5.5	20	15.5	-7.5	
20	20	15	-13 (-10.5)	24	19	-9	24	19	-11	
25	22.5	16	-14.5 (-12)	26.5	20	-10.5	26.5	20	-12.5	
32	23.5	18.5	-16.5 (-14)	27.5	22.5	-12.5	27.5	22.5	-14.5	

Note 1) Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation.

Note 2) Negative figures in the table W indicate an auto switch is mounted inward from the edge of the cylinder body.

Note 3) In the case of the 5 stroke or the 10 stroke, there are times in which the switch will not turn OFF or 2 switches will turn ON simultaneously due to their movement range. Therefore, set the position approximately 1 to 4 mm outward from the values given in the table above. Then, perform an operation inspection to make sure that the switches operate normally (if 1 switch is used, make sure that it turns ON and OFF properly; if 2 switches are used, make sure that both switches turn ON).

Note 4) () in column W is the dimensions of D-A93.

Operating Range

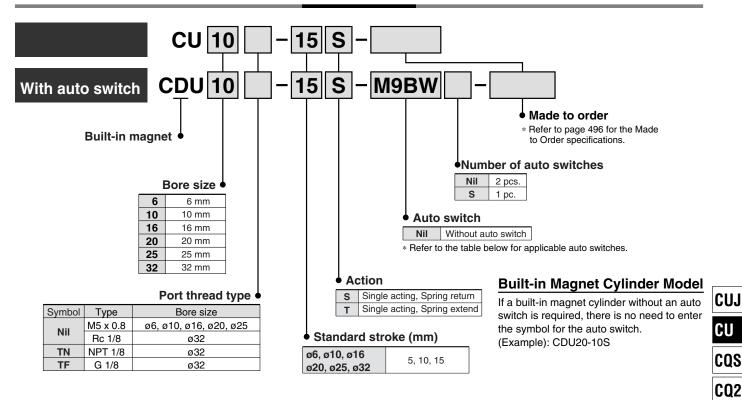
						(mm)			
Auto switch model	Bore size (mm)								
Auto Switch model	6	10	16	20	25	32			
D-A9□, A9□V	5	6	9	11	12.5	14			
D-M9□, M9□V	3	4	5.5	7	7	7.5			
D-M9□W, M9□WV	3	4	5.5	,	/	7.5			

 $[\]ast$ Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm30\%$ dispersion). It may vary substantially depending on an ambient environment.

Minimum Stroke for Auto Switch Mounting

(mm)

			(mm)							
No. of auto	A	Applicable auto switch								
switches mounted	D-A9□, D-A9□V	D-M9□, D-M9□V	D-M9□W, D-M9□WV							
1 pc.	5	5	5							
2 pcs.	10	5	10							



Free Mount Cylinder Single Acting, Single Rod, Spring Return/Extend

Series CU

ø6, ø10, ø16, ø20, ø25, ø32

How to Order

Applicable Auto Switches/Refer to pages 1263 to 1371 for further information on auto switches

	nicable Auto Own	LOTTIC 3/TTE	וכו נט	pages 1200 ic	13/110	n lululei ili	IOIIIIaliOII	on auto sw	illicites.							
		Electrical.	ight	VA/Series es		Load volta	ge	Auto switc	h model	Lead	wire	length	n (m)	Due sudan d		
Туре	Special function	Electrical entry	dicator light	Wiring (Output)		DC	AC	Perpendicular	In-line	0.5	1	3	5	Pre-wired connector	Applica	ble load
			프							(Nil)	(IVI)	(L)	(Z)			
				3-wire (NPN)		5 V. 12 V		M9NV	M9N	•			0	0	IC	
후				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit	
sta		Grommet	\ \ \ 	2-wire	24 V	12 V	1	M9BV	M9B	•	•	•	0	0	_	Relay,
<u>\$</u>	5	Grommet	Yes	3-wire (NPN))	5 V, 12 V] —	M9NWV	M9NW	•	•	•	0	0	IC	PLC
Solid state switch	Diagnostic indication			3-wire (PNP)				M9PWV	M9PW	•	•	•	0	0	circuit	
	(2-color indication)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	0	_	
_				3-wire		5 V		A96V	A96						IC	
호호		Grommet	Yes	(NPN equivalent)	_	5 V	_	A96V	A96	_	_	_	_	_	circuit	_
Reed switch		Gioillilet		2-wire	24 V	12 V	100 V	A93V	A93	•	_	•	_	_	_	Relay,
0,			No	Z-WITE	24 V	12 V	100 V or less	A90V	A90	•	_		_	_	IC circuit	PLC

3 m L (Example) M9NWL 5 m Z (Example) M9NWZ

* Since there are applicable auto switches other than the above, refer to page 538 for details.

* For detail about auto switches with pre-wired connector, refer to pages 1328 to 1329.

* Auto switches are shipped together but not assembled.

D-□

RQ

CQM

MU

Technical data

Individual

495

Series CU

Specifications

Bore size (mm)	6 10 16 20 25 32								
Fluid	Air								
Proof pressure	1.05 MPa								
Maximum operating pressure	0.7 MPa								
Minimum operating pressure	0.2 MPa 0.15 MPa 0.13 MPa								
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing)								
Ambient and fluid temperature	With auto switch: -10 to 60°C (No freezing)								
Lubrication			Non	ı-lube					
Piston speed			50 to 5	00 mm/s					
Cushion	Rubber bumper								
Rod end thread	Male thread								
Stroke length tolerance			+ 1.0 0	mm					

Note) ø6 with auto switch type: One side rubber bumper

JIS Symbol

Single acting, Spring return

Standard Stroke

Bore size (mm)	Standard stroke (mm)
6, 10, 16, 20, 25, 32	5, 10, 15

Theoretical Output

(N)

	(1.4)									
Action	Bore size	Ope	Operating pressure (MPa)							
ACTION	(mm)	0.3	0.5	0.7						
	ø6	4.99	10.7	16.3						
	ø10	16.7	32.4	48.1						
0(0)	ø16	45.6	86.3	126						
Spring return (S)	ø20	73	136	199						
	ø25	119	218	316						
	ø32	207	368	529						
	ø6	2.86	7.10	11.3						
	ø10	12.9	26.1	39.3						
Caring outend (T)	ø16	37.2	71.8	106						
Spring extend (T)	ø20	58	111	164						
	ø25	95	178	260						
	ø32	173	312	450						

For the reactive force of spring return, refer to page 1569.

Made to Order Specifications (For details, refer to page 1462.)

Symbol	Specifications
-XC22	Fluororubber seals

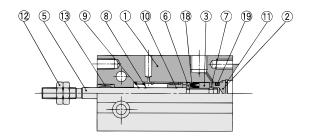
Mass/(): Denotes the values with D-A93.

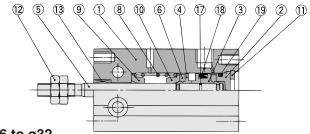
(g)

Model	Stroke (mm)								
iviodei	5	10	15						
C(D)U6-□S,T	22 (27)	25 (35)	28 (38)						
C(D)U10-□S,T	36 (41)	40 (50)	48 (58)						
C(D)U16-□S,T	50 (75)	56 (86)	71 (101)						
C(D)U20-□S,T	95 (128)	106 (143)	133 (170)						
C(D)U25-□S,T	176 (230)	193 (252)	235 (294)						
C(D)U32-□S,T	262 (335)	286 (364)	347 (425)						

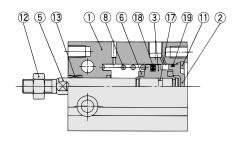
^{*} For the mass of auto switch, refer to page 1263.

Tightening Torque

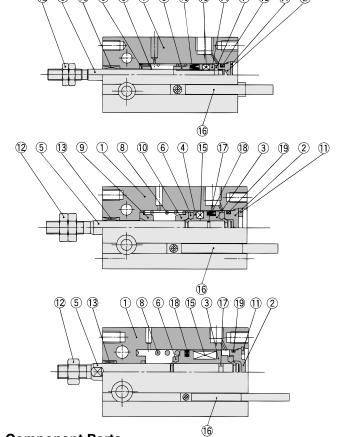

When mounting a CU single acting series, refer to page 484.


Free Mount Cylinder Single Acting, Single Rod, Spring Return/Extend Series CU

Construction


Single acting, Spring return

ø10


ø16 to ø32

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
	Head cover	Brass	ø6 to ø10, Electroless nickel plated
2	neau cover	Aluminum alloy	ø16 to ø32, Chromated
_	Piston	Brass	ø6 to ø10
3	PISIOII	Aluminum alloy	ø16 to ø32, Chromated
4	Piston	Brass	ø10
5	Piston rod	Stainless steel	
6	Bumper A	Urethane	
7	Bumper B	Urethane	
8	Return spring	Piano wire	Zinc chromated

With auto switch

Component Parts

COIII	ponent i arts		
No.	Description	Material	Note
9	Spring seat	Brass	
10	Spring seat	Brass	
11	Retaining ring	Carbon tool steel	Phosphate coated
12	Rod end nut	Carbon steel	Nickel plated
13	Bushing	Oil-impregnated sintered alloy	
14	Magnet holder	Brass	ø6
15	Magnet	_	
16	Auto switch	_	
17	Piston gasket		
18*	Piston seal	NBR	
19*	Gasket		

Replacement Parts: Seal Kit

	Bore size (mm) / Part no.									
	10	16	20	25	32					
Kit no.	CU10S-PS	CU16S-PS	CU20S-PS	CU25S-PS	CU32S-PS					

 \ast Seal kit includes 18, 19. Order the seal kit, based on each bore size.

* Seal kit includes a grease pack (10 g).

Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g)

D-□

CUJ

CU

CQS

CQ2

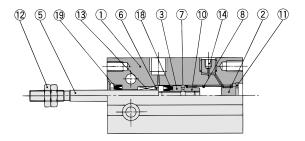
RQ

CQM

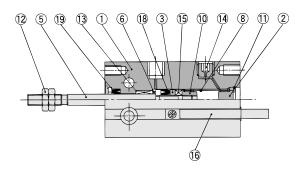
MU

-X□ Technical

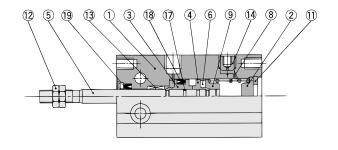
Individual

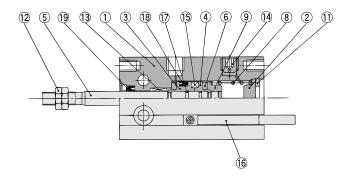


Series CU

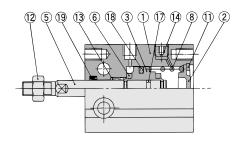

Construction

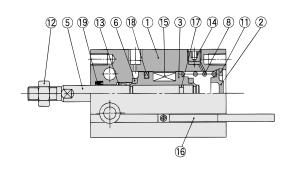
Single acting, Spring extend


ø6



With auto switch




ø10

ø16 to ø32

Component Parts

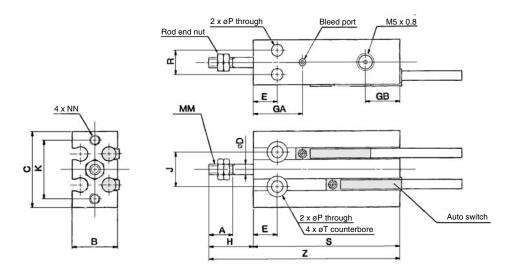
	•		
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Brass	ø6 to ø10, Electroless nickel plated
	nead cover	Aluminum alloy	ø16 to ø32, Chromated
	Piston	Brass	ø6 to ø10
3	Piston	Aluminum alloy	ø16 to ø32, Chromated
4	Piston	Brass	ø10
5	Piston rod	Stainless steel	
6	Bumper A	Urethane	
7	Bumper B	Urethane	
8	Return spring	Piano wire	Zinc chromated

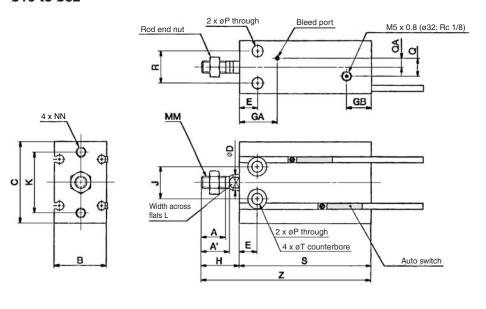
Component Parts

No.	Description	Material	Note
9	Spring seat	Brass	
10	Stopper	Brass	ø6
11	Retaining ring	Carbon tool steel	Phosphate coated
12	Rod end nut	Carbon steel	Nickel plated
13	Bushing	Oil-impregnated sintered alloy	
14	Plug with fixed orifice	Alloy steel	Black dyed
15	Magnet	_	
16	Auto switch		
17	Piston gasket		
18*	Piston seal	NBR	
19*	Rod seal		

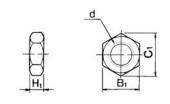
Replacement Parts: Seal Kit

	Bore size (mm) / Part no.									
	10	16	20	25	32					
Kit no.	CU10T-PS	CU16T-PS	CU20T-PS	CU25T-PS	CU32T-PS					


Grease pack part number: GR-S-010 (10 g)


^{*} Seal kit includes ⁽¹⁾8, ⁽¹⁾9. Order the seal kit, based on each bore size.
* Seal kit includes a grease pack (10 g).
Order with the following part number when only the grease pack is needed.

Dimensions: Single Acting, Spring Return


ø6, ø10

ø16 to ø32

Rod End Nut/Accessory

Material: Carbon steel

		material carbon etco.						
Part no.	Applicable bore size (mm)		Ηı	Bı	C ₁			
NTP-006	6	M3 x 0.5	1.8	5.5	6.4			
NTP-010	10	M4 x 0.7	2.4	7	8.1			
NTJ-015A	16	M5 x 0.8	4	8	9.2			
NT-015A	20	M6 x 1.0	5	10	11.5			
NT-02	25	M8 x 1.25	5	13	15.0			
NT-03	32	M10 x 1.25	6	17	19.6			

																				(mm)
Ī	Bore size (mm)	А	A'	В	С	D	E	GA	GB	н	J	K	L	ММ	NN	Р	Q	QA	R	т
	6	7	_	13	22	3	7	15	10	13	10	17	_	M3 x 0.5	M3 x 0.5 depth 5	3.2	_	_	7	6 depth 4.8
	10	10	_	15	24	4	7	16.5	10	16	11	18	_	M4 x 0.7	M3 x 0.5 depth 5	3.2	_	-	9	6 depth 5
	16	11	12.5	20	32	6	7	16.5	11.5	16	14	25	5	M5 x 0.8	M4 x 0.7 depth 6	4.5	4	2	12	7.6 depth 6.5
	20	12	14	26	40	8	9	19	12.5	19	16	30	6	M6 x 1.0	M5 x 0.8 depth 8	5.5	9	4.5	16	9.3 depth 8
	25	15.5	18	32	50	10	10	21.5	13	23	20	38	8	M8 x 1.25	M5 x 0.8 depth 8	5.5	9	4.5	20	9.3 depth 9
ı	32	19.5	22	40	62	12	11	23	12.5	27	24	48	10	M10 x 1.25	M6 x 1.0 depth 9	6.6	13.5	4.5	24	11 depth 11.5

		W	ithout a	uto swit	ch	With auto switch						
Bore size		S		Z			S			Z		
(mm)	5 st	10 st	15 st	5 st	10 st	15 st	5 st	10 st	15 st	5 st	10 st	15 st
6	38	43	48	51	56	61	38	43	48	51	56	61
10	41	46	56	57	62	72	41	46	56	57	62	72
16	35	40	50	51	56	66	45	50	60	61	66	76
20	41	46	56	60	65	75	51	56	66	70	75	85
25	45	50	60	68	73	83	55	60	70	78	83	93
32	47	52	62	74	79	89	57	62	72	84	89	99

D- □
-X □
Individual

CUJ

CU

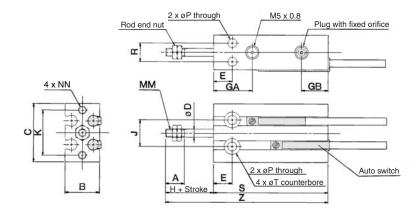
CQS

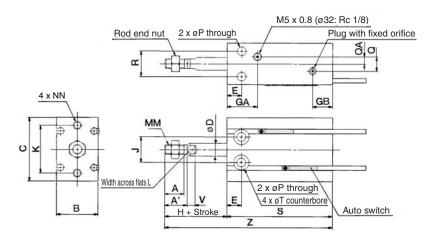
CQ2

RQ

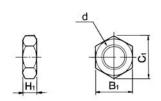
CQM

MU


Technical data


Series CU

Dimensions: Single Acting, Spring Extend


ø6, ø10

ø16 to ø32

Rod End Nut/Accessory

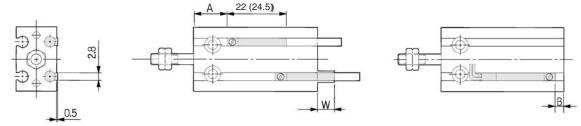
Material: Carbon steel

Part no.	Applicable bore size (mm)	d	Ηı	Bı	C ₁
NTP-006	6	M3 x 0.5	1.8	5.5	6.4
NTP-010	10	M4 x 0.7	2.4	7	8.1
NTJ-015A	16	M5 x 0.8	4	8	9.2
NT-015A	20	M6 x 1.0	5	10	11.5
NT-02	25	M8 x 1.25	5	13	15.0
NT-03	32	M10 x 1.25	6	17	19.6

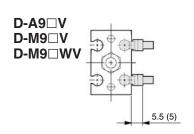
																				(mm)
Bore size (mm)	Α	A'	В	С	D	E	GA	GB	н	J	К	L	ММ	NN	Р	Q	QA	R	т	v
6	7	_	13	22	3	7	15	10	13	10	17	_	M3 x 0.5	M3 x 0.5 depth 5	3.2	_	_	7	6 depth 4.8	_
10	10	_	15	24	4	7	16.5	10	16	11	18	_	M4 x 0.7	M3 x 0.5 depth 5	3.2	_	_	9	6 depth 5	_
16	11	12.5	20	32	6	7	16.5	11.5	16	14	25	5	M5 x 0.8	M4 x 0.7 depth 6	4.5	4	2	12	7.6 depth 6.5	3.5
20	12	14	26	40	8	9	19	12.5	19	16	30	6	M6 x 1.0	M5 x 0.8 depth 8	5.5	9	4.5	16	9.3 depth 8	5
25	15.5	18	32	50	10	10	21.5	13	23	20	38	8	M8 x 1.25	M5 x 0.8 depth 8	5.5	9	4.5	20	9.3 depth 9	5
32	19.5	22	40	62	12	11	23	12.5	27	24	48	10	M10 x 1.25	M6 x 1.0 depth 9	6.6	13.5	4.5	24	11 depth 11.5	5

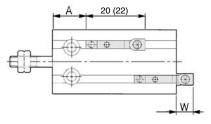
_		V	/ithout a	uto switc	h		With auto switch					
Bore size	S			Z			S			Z		
(mm)	5 st	10 st	15 st	5 st	10 st	15 st	5 st	10 st	15 st	5 st	10 st	15 st
6	38	43	48	56	66	76	38	43	48	56	66	76
10	41	46	56	62	72	87	41	46	56	62	72	87
16	45	50	60	66	76	91	45	50	60	66	76	91
20	41	46	56	65	75	90	51	56	66	75	85	100
25	45	50	60	73	83	98	55	60	70	83	93	108
32	47	52	62	79	89	104	57	62	72	89	99	114

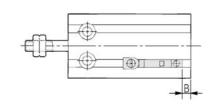
Minimum Stroke for Auto Switch Mounting


			(mm)
No. of auto		Applicable auto switch	
switches mounted	D-A9□, D-A9□V	D-M9□, D-M9□V	D-M9□W, D-M9□WV
1 pc.	5	5	5
2 pcs.	10	5	10

Proper Auto Switch Mounting Position (Detection at Stroke End) and Its Mounting Height: Single Acting, Spring Return


D-A9□


D-M9□


D-M9□W

(): Denotes the values of D-A93.

(): Denotes the values of D-A9□V.

Single Acting, Spring Return

J	migro riching, opining richinin											
Bore size	Ohnelia	D-A9	9□, D-A	9□V	D-M9□, D-M9□W			D-M9	D-M9□V, D-M9□WV			
(mm)	Stroke	Α	В	W	Α	В	W	Α	В	W		
6	All stroke	13.5	0	2.5 (5)	17.5	4	6.5	17.5	4	4.5		
10	5, 10 15	12.5 17.5	3.5	-1.5 (1)	16.5 21.5	7.5	2.5	16.5 21.5	7.5	0.5		
16	5, 10 15	16 21	4	-2 (0.5)	20 25	8	2	20 25	8	-0.5		
20	5, 10 15	20 25	6	-4 (-1.5)	24 29	10	0	24 29	10	-2		
25	5, 10 15	22.5 27.5	7	-5.5 (-3)	26.5 31.5	11	-1.5	26.5 31.5	11	-3.5		
32	5, 10 15	23.5 28.5	8.5	-6.5 (-4)	27.5 32.5	12.5	-2.5	27.5 32.5	12.5	-4.5		

Single Acting, Spring Extend (mm)											
Bore size	Stroke	D-A9	9□, D-A	9□V	D-M9	□, D- M9	9□W	D-M9□V, D-M9□WV			
(mm)	Stroke	Α	В	W	Α	В	W	Α	В	W	
6	All stroke	10.5	1.5	0.5 (3)	14.5	5.5	4.5	14.5	5.5	2.5	
10	5, 10	12.5	3.5	-1.5 (1)	16.5	7.5	2.5	10.5	7.5	0.5	
10	15	12.5	8.5	-6.5 (-4)	10.5	12.5	-2.5	16.5	12.5	-4.5	
16	5, 10	16	4	-2 (0.5)	20	8	2	00	8	0	
16	15	10	9	-7 (-4.5)	20	13	-3	20	13	-5	
00	5, 10	20	6	-4 (-1.5)		10	0	0.4	10	-2	
20	15	20	11	-9 (-6.5)	24	15	-5	24	15	-7	
05	5, 10	00.5	7	-5.5 (-3)	26.5	11	-1.5	00.5	11	-3.5	
25	15	22.5	12	-10.5 (-8)	20.5	16	-6.5	26.5	16	-8.5	
00	5, 10	23.5	8.5	-6.5 (-4)	27.5	12.5	-2.5	07.5	12.5	-4.5	
32	15	23.5	13.5	-11.5 (-9)		17.5	-7.5	27.5	17.5	-9.5	

Note 1) Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation. Note 2) Negative figures in the table W indicate an auto switch is mounted inward from the edge of the cylinder body.

Note 3) In the case of the 5 stroke or the 10 stroke, there are times in which the switch will not turn OFF or 2 switches will turn ON simultaneously due to their movement range. Therefore, set the position approximately 1 to 4 mm outward from the values given in the table above. Then, perform an operation inspection to make sure that the switches operate normally (if 1 switch is used, make sure that it turns ON and OFF properly; if 2 switches are used, make sure that both switches turn ON). Note 4) () in column W is the dimensions of D-A93.

CUJ

CU CQS

CQ2

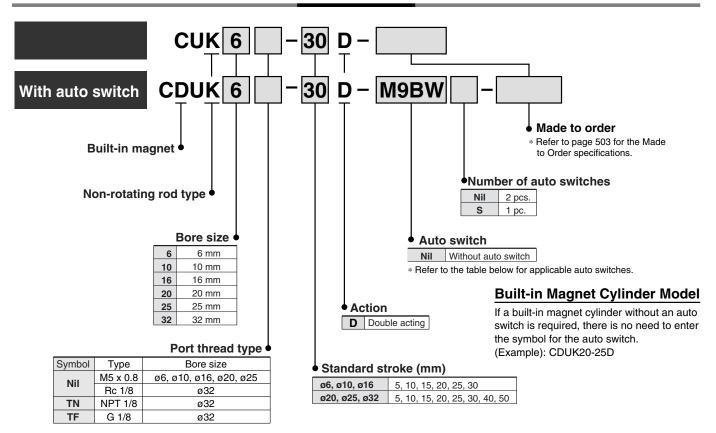
RQ

CQM

MU

Individual

-X□


Technical

Free Mount Cylinder: Non-rotating Rod Type **Double Acting, Single Rod**

Series CUK

ø6, ø10, ø16, ø20, ø25, ø32

Applicable Auto Switches/Refer to pages 1263 to 1371 for further information on auto switches

<u> </u>	plicable Auto SWI	torics/rie	ופו נט	pages 1200 to	13/110	i iuitilei iii										
		Flootwicel	light	\A/:wise es	I	_oad voltag	ge	Auto switch	h model	Lead	wire l	ength	ı (m)	Due suived		
Тур	e Special function	Electrical entry	l ja	Wiring (Output)		DC		Domandiaulau IIa Iiaa	0.5	1	3	5	Pre-wired connector	Applica	ble load	
		Citiy	Indicator	(Output)	DC .		AC	Perpendicular In-line		(Nil)	(M)	(L)	(Z)	Connector		
				3-wire (NPN)		5 V. 12 V		M9NV	M9N	•	•	•	0	0	IC	
횰				3-wire (PNP)	5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit		
Sta	Diamagnia diamana	Grommet	Yes	2-wire	24 V	12 V		M9BV	M9B	•	•	•	0	0	_	Relay,
Solid state switch		arommet	res	3-wire (NPN)		5 V, 12 V] _	M9NWV	M9NW	•	•	•	0	0	IC	PLC
တြင်	Diagnostic indication (2-color indication)			3-wire (PNP)		3 V, 12 V		M9PWV	M9PW	•	•	•	0	0	circuit	
	(2-color indication)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	0	_	
				3-wire		5 V		A96V	A96		_				IC	
2 6		Grommet	Yes	(NPN equivalent)		5 V		ASOV	ASO		_			_	circuit	
Reed		Gioillilet		2-wire 24 V	12 V	100 V	A93V	A93	•	—	•	_	_	_	Relay,	
			No		12 V	100 V or less	A90V	A90	•	-	•	—		IC circuit	PLC	

- * Lead wire length symbols: 0.5 m Nil (Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order.
- * Since there are applicable auto switches other than the above, refer to page 538 for details.
- * For detail about auto switches with pre-wired connector, refer to pages 1328 to 1329.
- * Auto switches are shipped together but not assembled.

Free Mount Cylinder: Non-rotating Rod Type Double Acting, Single Rod Series CUK

JIS Symbol

Double acting, Single rod

Made to Order

Made to Order Specifications (For details, refer to pages 1395 to 1498.)

Symbol	Specifications
-XB6	Heat resistant (-10 to 150°C)
-XB7	Cold resistant (- 40 to 700°C)
-XB9	Low speed (10 to 50 mm/s)
-XB13	Low speed (5 to 50 mm/s)
-XC19	Intermediate stroke (5 mm spacer)
-XC22	Fluororubber seals
-XC34	Non-rotating plate with work piece mounting screw (No extended part on the rod end)

A Precautions

Be sure to read before handling. Refer to front matters 54 and 55 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Operating Precautions

⚠ Caution

 Do not place your fingers in the clearance between the non-rotating plate and the cylinder tube.

Your fingers could get caught between the non-rotating plate and the cylinder tube when the piston rod retracts. Therefore, never place your finger in this area.

Because the cylinder outputs a great force, it could lead to injury if precautions are not taken to prevent your fingers from getting caught.

2. When using the non-rotating style, make sure that rotational torque is not applied to the piston rod. If rotational torque must be applied due to unavoidable circumstances, make sure to use it at the allowable rotational torque or less, which is shown in the table on the right.

Specifications

Bore size (mm)	6	10	16	20	25	32				
Fluid	Air									
Proof pressure			1.05	МРа						
Maximum operating pressure	0.7 MPa									
Minimum operating pressure	0.15 MPa 0.10 MPa 0.08 MPa									
Ambient and fluid temperature	,	Without auto switch: -10 to 70°C (No freezing)								
Ambient and hald temperature	With auto switch: -10 to 60°C (No freezing)									
Lubrication			Non	ı-lube						
Piston speed			50 to 5	00 mm/s						
Cushion	Rubber bumper									
Rod end thread	Male thread									
Stroke length tolerance	+ 1.0 mm									
Rod non-rotating accuracy Note)	±0.8° ±0.5°									

Note) No load: Rod at retracted

Standard Stroke

Bore size (mm)

C(D)UK6-□D

C(D)UK10-□D

C(D)UK16-□D

C(D)UK20-□D

C(D)UK25-□D

C(D)UK32-□D

Bore size (mm)	Standard stroke (mm)	For long stroke refer to
6, 10, 16	5, 10, 15, 20, 25, 30	For long stroke, refer to
20, 25, 32	5, 10, 15, 20, 25, 30, 40, 50	page 520.

Minimum Stroke for Auto Switch Mounting

(mn

	10 101 71410 011110		(11111)					
		Applicable auto switch						
No. of auto switches mounted	D-A9□, D-A9□V	D-A9□, D-A9□V						
1 pc.	5	5	5					
2 pcs.	10	5	10					

15

(44)

51

(61)

72

(102)

136

(176)

246

(305)

383

(461)

Stroke (mm)

25

40

(50)

59

(69)

84

(114)

160

(200)

280

(339)

435

(513)

30

43

(53)

63

(73)

90

(120)

172

(211)

297

(356)

461

195

(235)

335

(390)

513

(591)

20

37

(47)

55

(65)

78

(108)

148

(188)

263

(322)

409

(487)

Mass/(): Denotes the values with D-A93.

5

28

(33)

43

(48)

60

(85)

113

(147)

212

(266)

331

(404)

10

(41)

47

(57)

66

(96)

124

(164)

229

(288)

357

(435)

(g) CUJ

40 50 — — — — — —

219

(260)

370

(424)

565

(643)

RQ

CQS

CQ2

CQM

MU

 For the auto switch 	mass. refe	er to page	1263.

Allowable Rotational Torque

		•				
Bore size (mm)	6	10	16	20	25	32
Allowable rotational torque (N·m)	0.0015	0.02	0.04	0.10	0.15	0.20

Tightening Torque

When mounting Series CUK, refer to page 484.

Theoretical Output

Specifications are the same as CU series double acting, single rod. Refer to page 484.

Auto Switch Mounting Position

For the auto switch mounting position of Series CDUK, refer to page 488, since specifications are the same as standard type, double acting, single rod type.

D-□

Individual -X□

Technical data

Series CUK

Copper and Fluorine-free

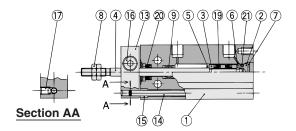
20-CUK **Bore size** Stroke D

◆Copper and Fluorine-free

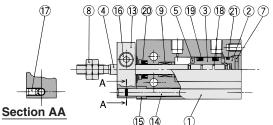
This cylinder eliminates any influences of copper ions or fluoro resins on color CRTs. Copper materials have been nickel plated or replaced with non-copper materials to prevent the generation of copper ions.

Minimum Operating Pressure

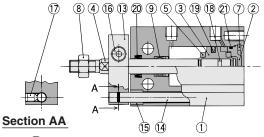
(MPa)


Bore size (mm)	6	10, 16	20, 25, 32
Minimum operating pressure	0.15	0.10	0.08

Specifications

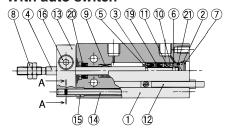

Action	Double acting, Single rod					
Bore size (mm)	6, 10, 16, 20, 25, 32					
Maximum operating pressure	1.05 MPa					
Cushion	Rubber bumper					
Stroke	Same as standard type (Refer to page 484.)					
Auto switch	Mountable					

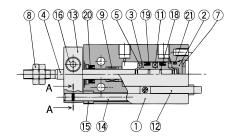
Construction

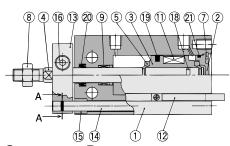

ø6

ø10

ø16 to ø32


Component Parts

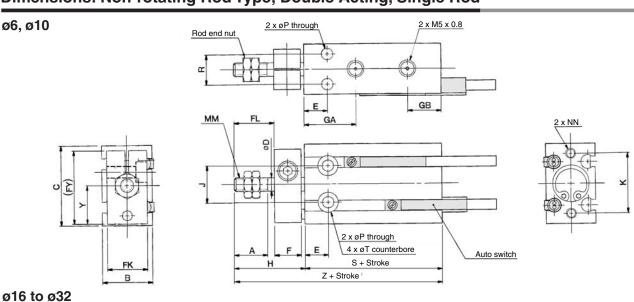

	•		
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Brass	ø6 to ø10, Electroless nickel plated
2	rieau cover	Aluminum alloy	ø16 to ø32, Chromated
3	Piston	Brass	ø6 to ø10
3	PISIOII	Aluminum alloy	ø16 to ø32, Chromated
4	Piston rod	Stainless steel	
5	Bumper A	Urethane	
6	Bumper B	Urethane	
7	Retaining ring	Carbon tool steel	Phosphate coated
8	Rod end nut	Carbon steel	Nickel plated
9	Bushing	Oil-impregnated	
<i>9</i>	Dusining	sintered alloy	
10	Magnet holder	Brass	ø6
	·		•

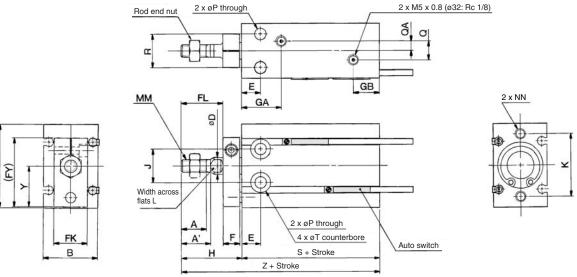

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Contents
10	CU10D-PS	
16	CU16D-PS	
20	CU20D-PS	Set of nos. above 19, 20, 21.
25	CU25D-PS	
32	CU32D-PS	

With auto switch

Component Parts


No.	Description	Material	Note										
11	Magnet	_											
12	Auto switch	_											
13	Non-rotating plate	Aluminum alloy	Nickel plated										
14	Guide rod	Stainless steel											
15	Bushing	Oil-impregnated sintered alloy											
16	Hexagon socket head cap screw	Carbon steel	Black zinc chromated										
17	Hexagon socket head set screw	Carbon steel	Black zinc chromated										
18	Piston gasket												
19*	Piston seal	NBR											
20*	Rod seal	INDR											
21*	Gasket												


- Seal kit includes (9, 20, 2). Order the seal kit, based on each bore size. Seal kit includes a grease pack (10 g).
 Order with the following part number when only the grease pack is

Grease pack part number: GR-S-010 (10 g)

Dimensions: Non-rotating Rod Type; Double Acting, Single Rod

	Part no.	Applicable bore size (mm)	d	H1	Bı	C ₁	MU
	NTP-006	6	M3 x 0.5	1.8	5.5	6.4	
т	NTP-010	10	M4 x 0.7	2.4	7	8.1	
	NTJ-015A	16	M5 x 0.8	4	8	9.2	
i	NT-015A	20	M6 x 1.0	5	10	11.5	
1	NT-02	25	M8 x 1.25	5	13	15.0	
	NT-03	32	M10 x 1.25	6	17	19.6	

Rod End Nut/Accessory Material: Carbon steel

	(mm)																
Bore size (mm)	Α	A'	В	С	D	E	F	FL	FK	FY	GA	GB	н	J	к	L	ММ
6	7	_	13	22	3	7	8	9	11	20.5	15	10	18	10	17	_	M3 x 0.5
10	10	_	15	24	4	7	8	12	12	22	16.5	10	21	11	18	_	M4 x 0.7
16	11	12.5	20	32	6	7	8	17	13	28	16.5 Note)	11.5	26	14	25	5	M5 x 0.8
20	12	14	26	40	8	9	8	20	16	33	19	12.5	29	16	30	6	M6 x 1.0
25	15.5	18	32	50	10	10	10	22	20	43.5	21.5	13	33	20	38	8	M8 x 1.25
32	19.5	22	40	62	12	11	12	29	24	51.5	23	12.5	42	24	48	10	M10 x 1.25

Bore size	NN	Р	Q	QA	R	-	v	Without a	uto switch	With aut	o switch
(mm)	ININ	Р	Q	QA	n	'	Y	S	Z	S	Z
6	M3 x 0.5 depth 5	3.2		_	7	6 depth 4.8	10.5	33	51	33	51
10	M3 x 0.5 depth 5	3.2			9	6 depth 5	11.5	36	57	36	57
16	M4 x 0.7 depth 6	4.5	4	2	12	7.6 depth 6.5	15.5	30	56	40	66
20	M5 x 0.8 depth 8	5.5	9	4.5	16	9.3 depth 8	19.5	36	65	46	75
25	M5 x 0.8 depth 8	5.5	9	4.5	20	9.3 depth 9	24.5	40	73	50	83
32	M6 x 1.0 depth 9	6.6	13.5	4.5	24	11 depth 11.5	30.5	42	84	52	94

Note) 5 stroke (CUK16-5D): GA = 14.5

CUJ

CU

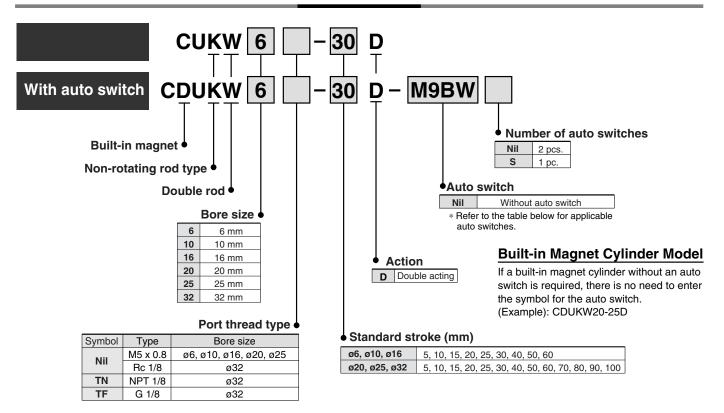
CQS

CQ2

RQ

CQM

Individual -X□ Technical


505

Free Mount Cylinder: Non-rotating Rod Type Double Acting, Double Rod

Series CUKW

ø6, ø10, ø16, ø20, ø25, ø32

How to Order

Applicable Auto Switches/Refer to pages 1263 to 1371 for further information on auto switches

<u> </u>	nicabic Auto Own	COTTOO/TIC	ici to	pages 1200 to	107 1 10	i iditiloi iii	omation	on auto sw	itorico.							
		Electrical	light	Mirina	Load voltage A		Auto switch model		Lead wire length (m)				Pre-wired			
Type	Special function	entry	ator	Wiring (Output)		20	40	Damaadiada	la lina	0.5	1	3	5	connector	Applica	ble load
		Critiy	Indicator	(Output)		DC	AC	Perpendicular	In-line	(Nil)	(M)	(L)	(Z)	COMMODIO		
				3-wire (NPN)		5 V, 12 V		M9NV	M9N	•	•	•	0	0	IC	
a _	Grommet			3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit	
ste		V	2-wire	24 V	12 V		M9BV	M9B	•	•	•	0	0	_	Relay,	
Solid state switch	Diagnostic indication	Gioillilet	Yes	3-wire (NPN)	24 V	5 V, 12 V	_	M9NWV	M9NW	•	•	•	0	0	IC	PLC
S s				3-wire (PNP)				M9PWV	M9PW	•	•	•	0	0	circuit	
	(2-color indication)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	0	_	
_				3-wire		5V		A96V	A96						IC	
당		Grommet	Yes	(NPN equivalent)		30	_	A90V	A90						circuit	_
Reed		Gioilinet		2-wire 24 V	24 V	12 V	100 V	A93V	A93	•	_	•		_	_	Relay,
0,			No	Z-WIIE	24 V	12 V	100 V or less	A90V	A90	•	_	•		_	IC circuit	PLC

* For detail about auto switches with pre-wired connector, refer to pages 1328 to 1329.

* Auto switches are shipped together but not assembled.

^{*} Since there are applicable auto switches other than the above, refer to page 538 for details.

Free Mount Cylinder: Non-rotating Rod Type Double Acting, Double Rod Series CUKW

Specifications

Bore size (mm)	6	10	16	20	25	32					
Fluid	Air										
Proof pressure			1.05	MPa							
Maximum operating pressure		0.7 MPa									
Minimum operating pressure	0.18 MPa	0.13 N	/IPa	().11 MPa						
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing)										
Ambient and fluid temperature	With auto switch: -10 to 60°C (No freezing)										
Lubrication			Non	-lube							
Piston speed			50 to 50	00 mm/s							
Cushion			Rubber	bumper							
Rod end thread				thread							
Stroke length tolerance			+ 1.0 0	mm							
Rod non-rotating accuracy Note)		d non-rotating accuracy Note) ±0.8° ±0.5°									

Note) No load: Rod in the non-rotating plate side at retracted

Standard Stroke

Bore size (mm)	Standard stroke (mm)
6, 10, 16	5, 10, 15, 20, 25, 30, 40, 50, 60
20, 25, 32	5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100

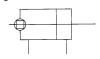
Minimum Stroke for Auto Switch Mounting

(mm)

CUJ

CU

CQS


CQ2

RQ

CQM

MU

JIS Symbol Non-rotating rod

	Applicable auto switch								
No. of auto switches mounted	D-A9□, D-A9□V	D-M9□, D-M9□V	D-M9□W, D-M9□WV						
1 pc.	5	5	5						
2 pcs.	10	5	10						

(787)

(848)

(909)

Mass/(): Denotes the values with D-A93.

(g) Stroke (mm) Model 5 10 15 20 25 30 40 50 60 70 80 90 100 33 (38) 36 (46) 40 (50) 43 (53) 46 (56) 50 (60) 64 (74) 71 (81) C(D)UKW6-□D (67)60 (70) 65 (75) 69 (79) 74 (84) 92 (102) 56 C(D)UKW10-□D (56) (66) (93) (111)84 (109) 105 133 C(D)UKW16-□D (121)(128) (135)(142)(149)(163)(177)(191)150 (185) 205 (245) 219 (259) 247 (286) 163 191 C(D)UKW20-□D (231) (315)(371) (203)(217)(343)(399)(427)(455)276 (330) 336 (395) 377 (436) 421 (476) 623 (682) 541 C(D)UKW25-D (355)(375)(416)(516)(559)(600)(641)(723)526 (604) 556 (634) 434 465 495 1014 C(D)UKW32-DD

(507)

(543)

Theoretical Output

(665)

Specifications are the same as double acting, double rod (Series CUW). Refer to page 491.

Allowable Rotational Torque

Ensure that rotational torque is not applied to the piston rod of Series CUKW. If rotational torque are applied unavoidably, refer to page 503.

Tightening Torque

(970)

(1031)

(1092)

When mounting Series CUKW, refer to page 484.

Auto Switch Mounting Position

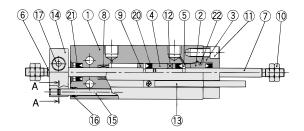
For the auto switch mounting position of Series CUKW, refer to page 494, since specifications are the same as double acting, double rod type.

D-□ -X□

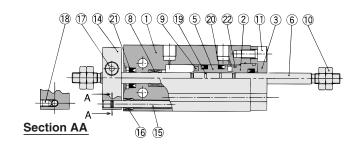
> Individual -X□

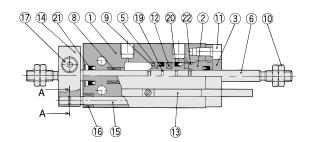
Technical

^{*} For the auto switch mass, refer to page 1263.

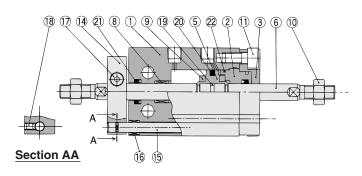

Series CUKW

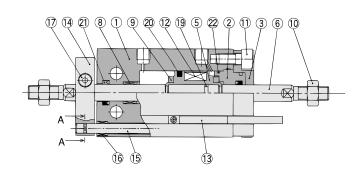
Construction


ø6


4 5 2 2 3 1 7 10 **Section AA** 16

With auto switch




ø10

ø16 to ø32

Component Parts

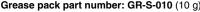
	_			
No.	Description	Material	Note	
1	Cylinder tube	Aluminum alloy	Hard anodized	
2	Rod cover	Aluminum alloy	Chromated	
3	Rod cover retainer	Aluminum alloy	Anodized	
4	Piston	Brass	ø6	
5	Diete -	Brass	ø6, ø10	
- J	Piston	Aluminum alloy	ø16 to ø32, Chromated	
6	Piston rod	Stainless steel		
7	Piston rod	Stainless steel	ø6	
8	Bushing	Oil-impregnated sintered alloy		
9	Bumper	Urethane		
10	Rod end nut	Carbon steel	Nickel plated	
11	Hexagon socket head cap screw	Carbon steel	Nickel plated	

Component Parts

No.	Description	Material	Note		
12	Magnet	_			
13	Auto switch	_			
14	Non-rotating plate	Aluminum alloy	Nickel plated		
15	Guide rod	Stainless steel			
16	Bushing	Oil-impregnated sintered alloy			
17	Hexagon socket head cap screw	Carbon steel	Black zinc chromated		
18	Hexagon socket head set screw	Carbon steel	Black zinc chromated		
19	Piston gasket				
20*	Piston seal	NDD			
21*	Rod seal	NBR			
22 *	Gasket				

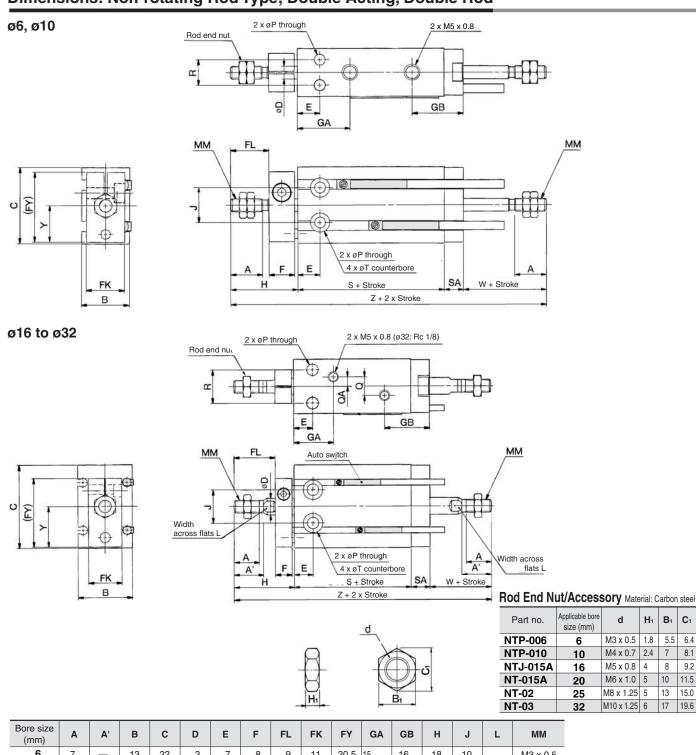
Replacement Parts: Seal Kit

	Bore size (mm) / Part no.								
	10	16	20	25	32				
Kit no.	CUW10D-PS	CUW16D-PS	CUW20D-PS	CUW25D-PS	CUW32D-PS				



* Seal kit includes 20, 21, 22. Order the seal kit, based on each bore size.

* Seal kit includes a grease pack (10 g).


Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g)

Dimensions: Non-rotating Rod Type; Double Acting, Double Rod

Bore size (mm)	Α	A'	В	С	D	E	F	FL	FK	FY	GA	GB	н	J	L	ММ
6	7	_	13	22	3	7	8	9	11	20.5	15	16	18	10	_	M3 x 0.5
10	10	_	15	24	4	7	8	12	12	22	16.5	16	21	11	_	M4 x 0.7
16	11	12.5	20	32	6	7	8	17	13	28	16.5 Note)	19	26	14	5	M5 x 0.8
20	12	14	26	40	8	9	8	20	16	33	19	21.5	29	16	6	M6 x 1.0
25	15.5	18	32	50	10	10	10	22	20	43.5	21.5	22	33	20	8	M8 x 1.25
32	19.5	22	40	62	12	11	12	29	24	51.5	23	22.5	42	24	10	M10 x 1.25

Bore size (mm)	Р	Q	QA	R	SA	т	w	Υ	Without a	uto switch	With aut	to switch
6	3.2	_	_	7	6	6 depth 4.8	13	10.5	38	75	38	75
10	3.2	_	_	9	6	6 depth 5	16	11.5	36	79	36	79
16	4.5	4	2	12	7.5	7.6 depth 6.5	16	15.5	30	79.5	40	89.5
20	5.5	9	4.5	16	9	9.3 depth 8	19	19.5	36	93	46	103
25	5.5	9	4.5	20	9	9.3 depth 9	23	24.5	40	105	50	115
32	6.6	13.5	4.5	24	10	11 depth 11.5	27	30.5	42	121	52	131

Note 1) 5 stroke (CUKW16-5D): GA = 14.5

Note 2) The two chamfered positions for the double rod type are not identical.

CUJ

CU

CQS

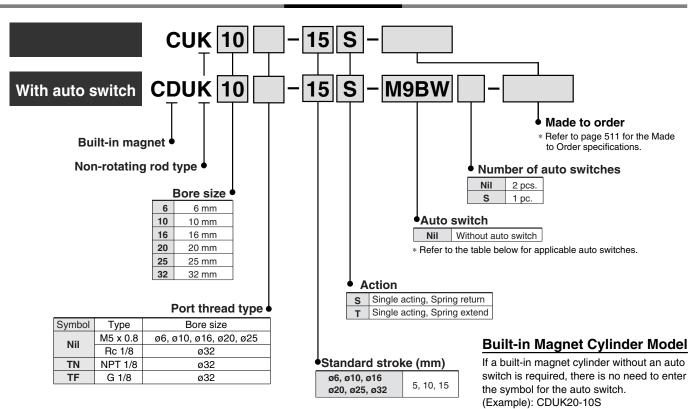
CQ2

RQ

CQM

MU

-X□ Individual -X□


Technical data

Free Mount Cylinder: Non-rotating Rod Type Single Acting, Spring Return/Extend

Series CUK

ø6, ø10, ø16, ø20, ø25, ø32

Applicable Auto Switches/Refer to pages 1263 to 1371 for further information on auto switches.

Α	Applicable Auto Switches/Refer to pages 1263 to 1371 for further information on auto switches.																
			Flantwinel	ight	\A/:wise es	l	oad voltag	je	Auto switc	h model	Lead	wire l	ength	(m)	Dua minad		
Ту	Type Special function	Electrical entry	Indicator light	Wiring (Output)		OC .	AC	Perpendicular	In-line	0.5	1	3	5	Pre-wired connector	Applica	ble load	
			Only	Indic	(Gatpat)	L		AC	rerpendicular	m-ime	(Nil)	(M)	(L)	(Z)	Connector		
					3-wire (NPN)		5 V, 12 V		M9NV	M9N	•	•	•	0	0	IC	
횰				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit		
sta	Diagnostic indication (2-color indication)	Grommet	\ \ \ 	2-wire	24 V	12 V		M9BV	M9B	•	•	•	0	0	_	Relay,	
亨			Gionnie	Yes	3-wire (NPN)		5 V, 12 V	_	M9NWV	M9NW	•	•	•	0	0	IC	PLC
So	Diagnostic ind				3-wire (PNP)				M9PWV	M9PW	•	•	•	0	0	circuit	
	(2-color indic	alion)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	0	_	
	_				3-wire		5 V		A96V	4001/ 400						IC	
ed	[다		Grommet	Yes	(NPN equivalent)	_	_ 5 V	_	A96V	A96		_	_			circuit	_
æ	switch		Gioillilet		2-wiro	24.1/	10.1/	100 V	A93V	A93	•		•	_	_	_	Relay,
	•				2-wire 24 V	24 V 12 V		A90V	A90	•	_	•	_	_	IC circuit	PLC	

- * Lead wire length symbols: 0.5 m ···················Nil (Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order.
- * Since there are applicable auto switches other than the above, refer to page 538 for details.
- * For detail about auto switches with pre-wired connector, refer to pages 1328 to 1329.
- * Auto switches are shipped together but not assembled.

Free Mount Cylinder: Non-rotating Rod Type Single Acting, Spring Return/Extend Series CUK

Specifications

Bore size (mm)	6	10	16	20	25	32		
Fluid		Air						
Proof pressure			1.05	MPa				
Maximum operating pressure	pressure 0.7 MPa							
Minimum operating pressure	0.23 MPa	0.18	ИРа	0.1	6 MPa			
Ambient and fluid temperature	With	Without auto switch: -10 to 70°C (No freezing)						
Ambient and naid temperature	With auto switch: -10 to 60°C (No freezing)							
Lubrication		Non-lube						
Piston speed		50 to 500 mm/s						
Cushion Note 1)		Rubber bumper on both ends						
Rod end thread			Male	hread				
Stroke length tolerance		+ 1.0 mm						
Rod non-rotating accuracy Note 2)	±0.8° ±0.5°							

Note 1) ø6: With auto switch, single rubber bumper

Note 2) No load: Rod at retracted

Standard Stroke

(mm)

Bore size (mm)	Standard stroke (mm)		
6, 10, 16, 20, 25, 32	5, 10, 15		

Minimum Stroke for Auto Switch Mounting

(mm)

No of outs	Applicable auto switch							
No. of auto switches mounted	D-A9□, D-A9□V	D-M9□, D-M9□V	D-M9□W, D-M9□WV					
1 pc.	5	5	5					
2 pcs.	10	5	10					

JIS Symbol

Single acting, Spring return Single acting, Spring extend

Mass/(): Denotes the values with D-A93.

CUJ

CQS

CQ2

RQ

CQM

MU

` '							
Model	Stroke (mm)						
Model	5	10	15				
C(D)UK6-□S	28	31	34				
- (-)-110 = T	(33)	(41)	(44)				
C(D)UK10-□S	43	47	55				
C(D)OK10-DT	(48)	(57)	(65)				
C(D)UK16 ¬S	60	66	81				
C(D)UK16-□S T	(85)	(90)	(111)				
C(D)HK20 □S	113	124	153				
C(D)UK20-□ <mark>S</mark> T	(147)	(164)	(193)				
CONTRACTOR	212	229	271				
C(D)UK25-□ <mark>S</mark> T	(266)	(288)	(330)				
C(D)III/22 □S	331	357	422				
C(D)UK32-□S	(404)	(435)	(500)				

^{*} For the auto switch mass, refer to page 1263.

Made to Order

Made to Order Specifications (For details, refer to pages 1462 and 1469.)

Symbol	Specifications					
-XC22	Fluororubber seals					
-XC34	Non-rotating plate with work piece mounting screw (No extended part on the rod end)					

Tightening Torque

When mounting a CUK single acting series, refer to page 484.

Theoretical Output

Specifications are the same as single acting, spring return/spring extend type (Series CU). Refer to page 496.

Spring Reaction Force

For the reactive force of spring return, refer to page 1569.

Auto Switch Mounting Position

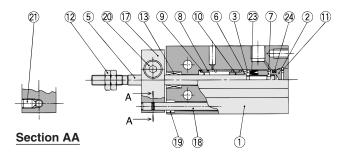
For the auto switch mounting position of CDUK series single acting, spring return/spring extend, refer to page 501, since specification are the same as standard type, single acting, spring return/spring extend type.

Allowable Rotational Torque

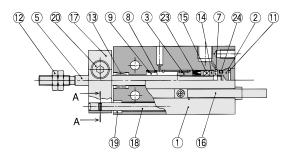
Make sure that rotational torque is not applied to the piston rod of the CUK series single acting type cylinder. If the rotation torque were applied unavoidably, refer to page 503.

Individual -X□

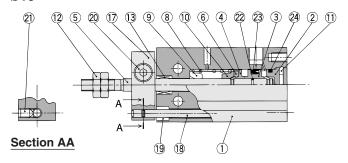
Technical data

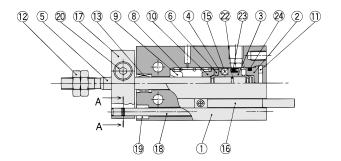


Series CUK

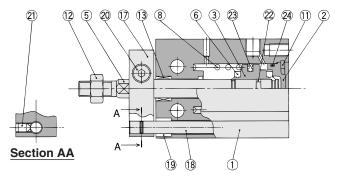

Construction

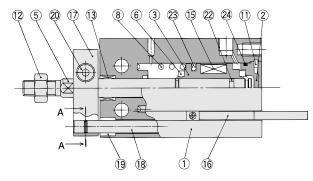
Single acting, Spring return


ø6



With auto switch




ø10

ø16 to ø32

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Brass	ø6 to ø10, Electroless nickel plated
2	neau cover	Aluminum alloy	ø16 to ø32, Chromated
3	Piston	Brass	ø6 to ø10
3	Piston	Aluminum alloy	ø16 to ø32, Chromated
4	Piston	Brass	ø10
5	Piston rod	Stainless steel	
6	Bumper A	Urethane	
7	Bumper B	Urethane	
8	Return spring	Piano wire	Zinc chromated
9	Spring seat	Brass	
10	Spring seat	Brass	

Component Parts

COII	iponeni Paris		
No.	Description	Material	Note
11	Retaining ring	Carbon tool steel	Phosphate coated
12	Rod end nut	Carbon steel	Nickel plated
13	Bushing	Oil-impregnated sintered alloy	
14	Magnet holder	Brass	ø6
15	Magnet	_	
16	Auto switch	_	
17	Non-rotating plate	Aluminum alloy	Nickel plated
18	Guide rod	Stainless steel	
19	Bushing	Oil-impregnated sintered alloy	Black zinc chromated
20	Hexagon socket head cap screw	Carbon steel	Black zinc chromated
21	Hexagon socket head set screw	Carbon steel	
22	Piston gasket		
23*	Piston seal	NBR	
24*	Gasket		

Replacement Parts: Seal Kit

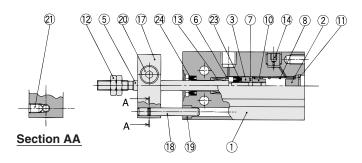
			Bore size (mm) / Part no).	
	10	16	20	25	32
Kit no.	CU10S-PS	CU16S-PS	CU20S-PS	CU25S-PS	CU32S-PS

^{*} Seal kit includes ②, ②. Order the seal kit, based on each bore size.

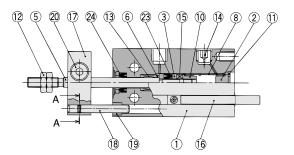
* Seal kit includes a grease pack (10 g).

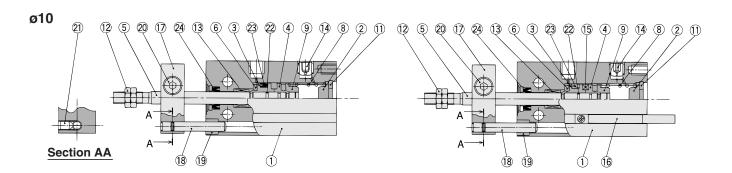
Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g)

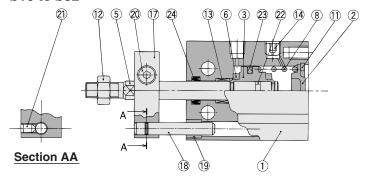


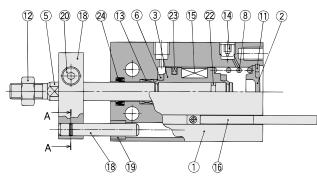
Free Mount Cylinder: Non-rotating Rod Type Single Acting, Spring Return/Extend Series CUK


Construction


Single acting, Spring extend

ø6




With auto switch

ø16 to ø32

Component Parts

No.	Description	Material	Note
110.			
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Brass	ø6 to ø10, Electroless nickel plated
2	neau covei	Aluminum alloy	ø16 to ø32, Chromated
_	Distan	Brass	ø6 to ø10
3	Piston	Aluminum alloy	ø16 to ø32, Chromated
4	Piston	Brass	ø10
5	Piston rod	Stainless steel	
6	Bumper A	Urethane	
7	Bumper B	Urethane	
8	Return spring	Piano wire	Zinc chromated
9	Spring seat	Brass	
10	Stopper	Brass	ø6
11	Retaining ring	Carbon tool steel	Phosphate coated

Component Parts

No.	Description	Material	Note
12	Rod end nut	Carbon steel	Nickel plated
13	Bushing	Oil-impregnated sintered alloy	
14	Plug with fixed orifice	Alloy steel	Black dyed
15	Magnet	_	
16	Auto switch	_	
17	Non-rotating plate	Aluminum alloy	Nickel plated
18	Guide rod	Stainless steel	
19	Bushing	Oil-impregnated sintered alloy	Black zinc chromated
20	Hexagon socket head cap screw	Carbon steel	Black zinc chromated
21	Hexagon socket head set screw	Carbon steel	
22	Piston gasket		
23*	Piston seal	NBR	
24*	Rod seal		

Replacement Parts: Seal Kit

		Bore size (mm) / Part no.									
	10	16	20	25	32						
Kit no.	CU10T-PS	CU16T-PS	CU20T-PS	CU25T-PS	CU32T-PS						

* Seal kit includes $rac{2}{3}$, $rac{2}{4}$. Order the seal kit, based on each bore size. * Seal kit includes a grease pack (10 g).

Order with the following part number when only the grease pack is needed. Grease pack part number: GR-S-010 (10 g)

D-□

CUJ

CU

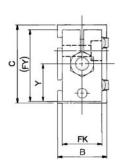
CQS

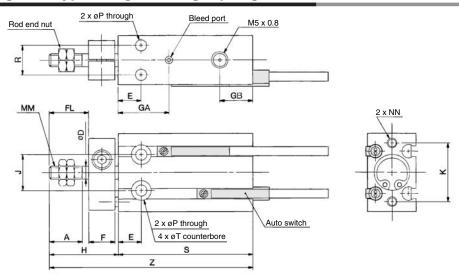
CQ2

RQ

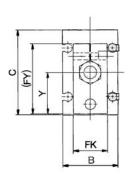
CQM

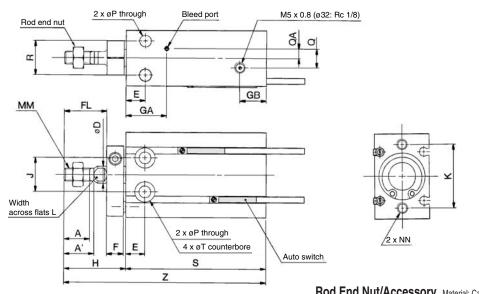
MU

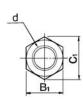

Individual -X□


Technical

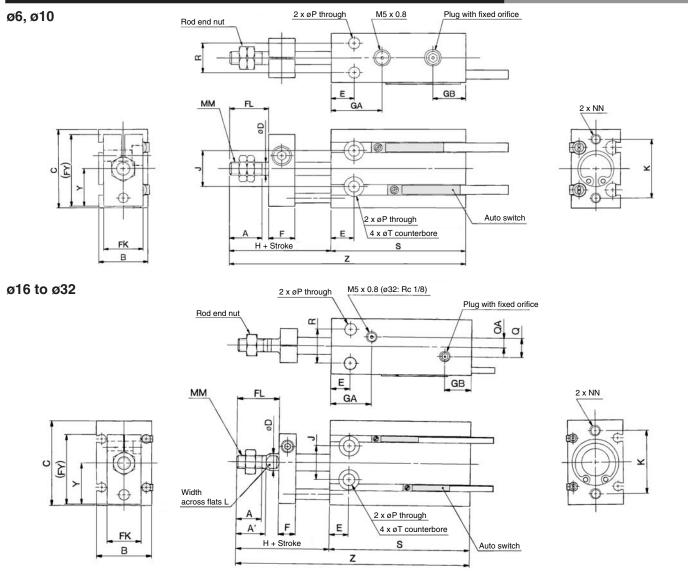
Series CUK


Dimensions: Non-rotating Rod Type; Single Acting, Spring Return





ø16 to ø32



Roa Ena Ni	ut/Access	sory Mate	erial: (Carbor	ı steel
Part no.	Applicable bore size (mm)	d	H₁	Bı	C ₁
NTP-006	6	M3 x 0.5	1.8	5.5	6.4
NTP-010	10	M4 x 0.7	2.4	7	8.1
NTJ-015A	16	M5 x 0.8	4	8	9.2
NT-015A	20	M6 x 1.0	5	10	11.5
NT-02	25	M8 x 1.25	5	13	15.0
NT-03	32	M10 x 1.25	6	17	19.6

Bore size (mm)	Α	A'	В	С	D	Е	F	FL	FK	FY	GA	GB	н	J	К	L	ММ	NN
6	7	_	13	22	3	7	8	9	11	20.5	15	10	18	10	17	_	M3 x 0.5	M3 x 0.5 depth 5
10	10	_	15	24	4	7	8	12	12	22	16.5	10	21	11	18	_	M4 x 0.7	M3 x 0.5 depth 5
16	11	12.5	20	32	6	7	8	17	13	28	16.5	11.5	26	14	25	5	M5 x 0.8	M4 x 0.7 depth 6
20	12	14	26	40	8	9	8	20	16	33	19	12.5	29	16	30	6	M6 x 1.0	M5 x 0.8 depth 8
25	15.5	18	32	50	10	10	10	22	20	43.5	21.5	13	33	20	38	8	M8 x 1.25	M5 x 0.8 depth 8
32	19.5	22	40	62	12	11	12	29	24	51.5	23	12.5	42	24	48	10	M10 x 1.25	M6 x 1.0 depth 9

D																					Without auto switch						With auto switch			
Bore size (mm)	Р	Q	QA	R	Т	Υ	S		Z			S			Z															
(111111)							5 st	10 st	15 st	5 st	10 st	15 st	5 st	10 st	15 st	5 st	10 st	15 st												
6	3.2	_	_	7	6 depth 4.8	10.5	38	43	48	56	61	66	38	43	48	56	61	66												
10	3.2	_	_	9	6 depth 5	11.5	41	46	56	62	67	77	41	46	56	62	67	77												
16	4.5	4	2	12	7.6 depth 6.5	15.5	35	40	50	61	66	76	45	50	60	71	76	86												
20	5.5	9	4.5	16	9.3 depth 8	19.5	41	46	56	70	75	85	51	56	66	80	85	95												
25	5.5	9	4.5	20	9.3 depth 9	24.5	45	50	60	78	83	93	55	60	70	88	93	103												
32	6.6	13.5	4.5	24	11 depth 11.5	30.5	47	52	62	89	94	104	57	62	72	99	104	114												

Dimensions: Non-rotating Rod Type; Single Acting, Spring Extend

Rod End No	ut/Access	SORY Mat	erial: (Carbor	n steel
Part no.	Applicable bore size (mm)	d	H1	Bı	C ₁
NTP-006	6	M3 x 0.5	1.8	5.5	6.4
NTP-010	10	M4 x 0.7	2.4	7	8.1
NTJ-015A	16	M5 x 0.8	4	8	9.2
NT-015A	20	M6 x 1.0	5	10	11.5
NT-02	25	M8 x 1.25	5	13	15.0
NT-03	32	M10 x 1.25	6	17	19.6

Bore size (mm)	Α	A'	В	С	D	Е	F	FL	FK	FY	GA	GB	н	J	К	L	ММ	NN
6	7	_	13	22	3	7	8	9	11	20.5	15	10	18	10	17	_	M3 x 0.5	M3 x 0.5 depth 5
10	10	_	15	24	4	7	8	12	12	22	16.5	10	21	11	18	_	M4 x 0.7	M3 x 0.5 depth 5
16	11	12.5	20	32	6	7	8	17	13	28	16.5	11.5	26	14	25	5	M5 x 0.8	M4 x 0.7 depth 6
20	12	14	26	40	8	9	8	20	16	33	19	12.5	29	16	30	6	M6 x 1.0	M5 x 0.8 depth 8
25	15.5	18	32	50	10	10	10	22	20	43.5	21.5	13	33	20	38	8	M8 x 1.25	M5 x 0.8 depth 8
32	195	22	40	62	12	11	12	29	24	51.5	23	12.5	42	24	48	10	M10 v 1 25	M6 x 1 0 denth 9

D				R	R T			W	thout a	uto swit	tch		With auto switch					
Bore size (mm)	Р	Q	QA			Т	Υ		S			Z			S			Z
(111111)							5 st	10 st	15 st	5 st	10 st	15 st	5 st	10 st	15 st	5 st	10 st	15st
6	3.2	_	_	7	6 depth 4.8	10.5	38	43	48	61	71	81	38	43	48	61	71	81
10	3.2	_	_	9	6 depth 5	11.5	41	46	56	67	77	92	41	46	56	67	77	92
16	4.5	4	2	12	7.6 depth 6.5	15.5	45	50	60	76	86	101	45	50	60	76	86	101
20	5.5	9	4.5	16	9.3 depth 8	19.5	41	46	56	75	85	100	51	56	66	85	95	110
25	5.5	9	4.5	20	9.3 depth 9	24.5	45	50	60	83	93	108	55	60	70	93	103	118
32	6.6	13.5	4.5	24	11 depth 11.5	30.5	47	52	62	94	104	119	57	62	72	104	114	129

D-□ -X□

CUJ

CU

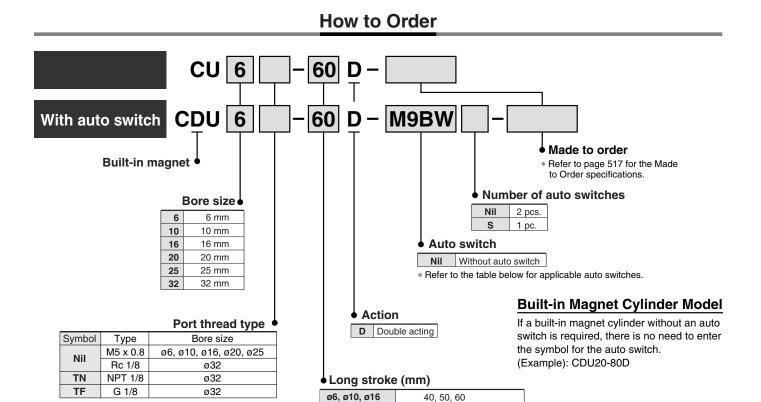
CQS

CQ2

RQ

CQM

MU


-X□ Technical data

Individual

Free Mount Cylinder: Long Stroke Type Double Acting, Single Rod

Series CU

ø6, ø10, ø16, ø20, ø25, ø32

Applicable Auto Switches/Refer to pages 1263 to 1371 for further information on auto switches

	mouble Auto OWI		_										/ \			
		Electrical	light	Wiring	L	_oad voltaç	je	Auto switch model		Lead wire length (m				Pre-wired		
Type	Special function	entry	호	(Output)	5.0		AC		l	0.5	1	3	5	connector	Applica	ble load
		entry	Indicator	(Output)	l	DC		Perpendicular	In-line	(Nil)	(M)	(L) (Z		Connector		
				3-wire (NPN)		5 V, 12 V		M9NV	M9N	•	•	•	0	0	IC	
章 _				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit	
ste		Grommet	Yes	2-wire 24 V	12 V		M9BV	M9B	•	•	•	0	0	_	Relay,	
<u>≅</u> ≅	D	diominet	res	3-wire (NPN)	24 V	5 V, 12 V	_	M9NWV	M9NW	•	•	•	0	0	IC	PLC
Solid state switch	Diagnostic indication (2-color indication)			3-wire (PNP)		5 V, 12 V		M9PWV	M9PW	•	•	•	0	0	circuit	
	(2-color indication)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	0	_	
				3-wire		5 V		A96V	A96						IC	
द्व		Grommet	Yes	(NPN equivalent)		5 V		ASOV	ASO						circuit	
Reed switch		Gronninet		2-wire	24 V	24 V 12 V	100 V	A93V	A93	•	—	•		_	_	Relay,
0,			No	2-WII6 24 V	12 V	100 V or less	A90V	A90	•	—	•		_	IC circuit	PLC	

ø20, ø25, ø32

60, 70, 80, 90, 100

5 m Z (Example) M9NWZ

st Since there are applicable auto switches other than the above, refer to page 538 for details.

^{*} For detail about auto switches with pre-wired connector, refer to pages 1328 to 1329.

^{*} Auto switches are shipped together but not assembled.

Free Mount Cylinder: Long Stroke Type Double Acting, Single Rod Series CU

Specifications

Bore size (mm)	6	10	16	20	25	32			
Fluid	Air								
Proof pressure			1.05	MPa					
Maximum operating pressure	0.7 MPa								
Minimum operating pressure	0.12 MPa	0.06	MPa	(0.05 MPa	a			
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing)								
Ambient and naid temperature	With auto switch: -10 to 60°C (No freezing)								
Lubrication	Non-lube								
Piston speed			50 to 50	00 mm/s					
Cushion			Rubber	bumper					
Rod end thread				thread					
Stroke length tolerance			+ 1.0	mm					

Standard Stroke

Bore size (mm)	Standard stroke (mm)
6, 10, 16	40, 50, 60
20, 25, 32	60, 70, 80, 90, 100

JIS Symbol Double acting,

Spring rod

Symbol	Specifications
-XB6	Heat resistant (-10 to 150°C)
-XB7	Cold resistant (-40 to 70°C)
-XB9	Low speed (10 to 50 mm/s)
-XB13	Low speed (5 to 50 mm/s)
-XC19	Intermediate stroke (5 mm spacer)
-XC22	Fluororubber seals

Made to Order Specifications (For details, refer to pages 1395 to 1498.)

Mass/(): Denotes the values with D-A93.

			ass/(): Denotes the values with D-A93. (g)									
Stroke (mm)												
40	50	60	70	80	90	100						
43 (53)	49 (59)	55 (65)	_	_	_	_						
64 (74)	72 (82)	80 (90)	_	_	_	_						
92 (122)	104 (134)	116 (146)	_	_	_	_						
_	1	216 (253)	238 (275)	260 (297)	282 (319)	304 (341)						
	_	363 (422)	397 (456)	431 (490)	465 (524)	499 (558)						
_	_	526 (604)	574 (652)	622 (700)	670 (748)	718 (796)						
	43 (53) 64 (74) 92 (122) —	43 49 (59) 64 72 (82) 92 104 (134) — — — — — —	43	43 49 55 — (53) (59) (65) — 64 72 80 — (74) (82) (90) — 92 104 116 — (122) (134) (146) — — 216 238 (275) — — 363 (275) — — 363 (422) (456) — — 526 574 (652)	43 49 55 — — 64 72 80 — — 72 80 — — 92 104 116 — — 102 (134) (146) — — 102 — 216 238 260 (253) (275) (297) 103 — 363 397 431 (422) (456) (490) 103 — 526 574 622 (604) (652) (700)	43 49 55 — — — 64 72 80 — — — 92 104 116 — — — (122) (134) (146) — — — — 216 238 260 282 (253) (275) (297) (319) — — 363 397 431 465 (422) (456) (490) (524) — 526 574 622 670 (604) (652) (700) (748)						

^{*} For the auto switch mass, refer to page 1263.

Auto Switch Mounting Position

For the auto switch mounting position of CDU long stroke series, refer to page 488, since specifications are the same as standard type, double acting, single rod type.

Tightening Torque

Refer to page 484 for mounting a long stroke type.

Theoretical Output

Specifications are the same as CU series double acting, single rod. Refer to page 484.

CUJ

CQS CQ2

RQ

CQM

MU

Individual -X□

Technical

Series CU

Copper and Fluorine-free

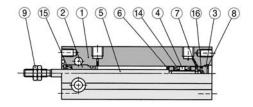
20-CU Bore size - Stroke D

• Copper and Fluorine-free

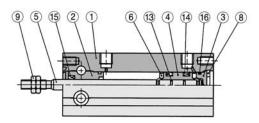
This cylinder eliminates any influences of copper ions or fluoro resins on color CRTs. Copper materials have been nickel plated or replaced with non-copper materials to prevent the generation of copper ions.

Minimum Operating Pressure

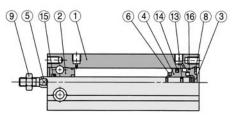
(MPa)


Bore size (mm)	6	10, 16	20, 25, 32		
Minimum operating pressure	0.12	0.12	0.05		

Specifications


Action	Double acting, Single rod
Bore size (mm)	6, 10, 16, 20, 25, 32
Maximum operating pressure	1.05 MPa
Cushion	Rubber bumper
Stroke	Same as standard type (Refer to page 484.)
Auto switch	Mountable

Construction


ø6

ø10

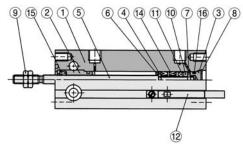
ø16 to ø32

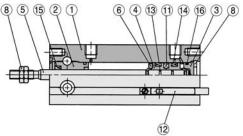
Component Parts

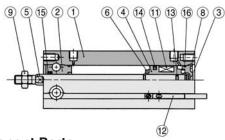
No.	Description	Material	Note
_ 1	Cylinder tube	Aluminum alloy	Hard anodized
2	Rod cover	Aluminum alloy	Hard anodized
3	Head cover	Brass	ø6 to ø10, Electroless nickel plated
3	ricaa oover	Aluminum alloy	ø16 to ø32, Chromated
4	Piston	Brass	ø6 to ø10
4	1 131011	Aluminum alloy	ø16 to ø32, Chromated
5	Piston rod	Stainless steel	
6	Bumper A	Urethane	
7	Bumper B	Urethane	

Replacement Parts: Seal Kit

. iopiacomon	e i ai toi ooai itii					
Bore size (mm)	Kit no.	Contents				
10	CU10D-PS					
16	CU16D-PS					
20	CU20D-PS	Set of nos. above 14, 15, 16.				
25	CU25D-PS					
32	CH32D-PS					

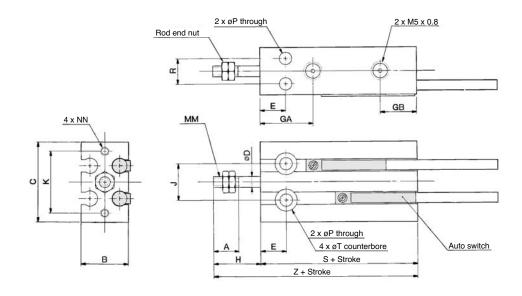



* Seal kit includes $^{\circ}$, $^{\circ}$, $^{\circ}$. Order the seal kit, based on each bore size. * Seal kit includes a grease pack (10 g).

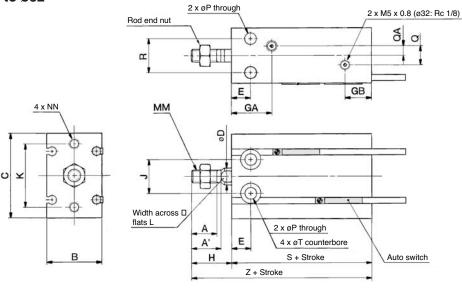

Order with the following part number when only the grease pack is needed

Grease pack part number: GR-S-010 (10 g)

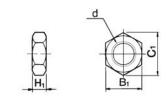
With auto switch


Component Parts

00111												
No.	Description	Material	Note									
8	Retaining ring	Carbon tool steel	Phosphate coated									
9	Rod end nut	Carbon steel	Nickel plated									
10	Magnet holder	Brass	ø6									
11	Magnet	_										
12	Auto switch	_										
13	Piston gasket											
14*	Piston seal	NBR										
15*	Rod seal											
16*	Gasket											



Dimensions: Double Acting, Single Rod


ø6, ø10

Rod End Nut/Accessory

	Material: Carbon steel□							
Part no.	Applicable bore (mm)□	d	H1	B ₁	C ₁			
NTP-006	6	M3 x 0.5	11.80	I 5.5	□ 6.4□			
NTP-010	10	M4 x 0.70	12.40	1070	□8.1□			
NTJ-015A	16	M5 x 0.80	140	□8□	□9.2□			
NT-015A	20	M6 x 1.00	150	10□	11.5□			
NT-02	25	M8 x 1.25	<u>Б</u> П	13□	15.0□			
NT-03	32	M10 x 1.25	160	170	19.6□			

																	(111111)
Bore size□ (mm)□	Α	A'	В	С	D	Е	GA	GB	н	J	К	L	ММ	NN	Р	Q	QA
6	07 0	<u> </u>	13□	220	3□	70	15□	10□	13□	10□	170	-0	M3 x 0.5□	M3 x 0.5 depth 5□	3.2□	G-0	G-0
10	100 0	<u></u> -	15□	240	40	70	16.5□	10□	16□	110	18□	-0	M4 x 0.7□	M3 x 0.5 depth 5□	3.2□	G-0	G-0
16	110	12.5□	20□	32□	6□	70	16.5□	11.5□	16□	14□	25□	5□	M5 x 0.8□	M4 x 0.7 depth 6□	4.5□	-4 -	20
20	120	140	26□	40□	8□	90	19□	12.5□	19□	16□	30□	6□	M6 x 1.0□	M5 x 0.8 depth 8□	5.5□	□9□	4.5□
25	15.5□	18□	32□	50□	10□	10□	21.50	13□	23□	200	38□	8□	M8 x 1.25□	M5 x 0.8 depth 8□	5.5□	□9□	4.5□
32	19.5□	22□	40□	62□	12□	11□	23□	12.5□	27□	240	48□	10□	M10 x 1 25Π	M6 x 1 0 depth 9Π	6.6□	13.5□	4.5□

Bore size□	R	т	Without auto switch□ With auto switch						
(mm)	n	•	S□	Z	S□	Z			
6 7□ 6 depth 4.8□		33□	46□	33□	46□				
10 9□ 6 depth		6 depth 5□	36□	52□	36□	52□			
16 12□		7.6 depth 6.5□	30□	46□	40□	56□			
20 16□		9.3 depth 8□	36□	55□	46□	65□			
25 20□		9.3 depth 9□	40□	63□	50□	73□			
32	24□	11 depth 11.5	42□	69□	52□	79□			

D -□
-X□
Individual

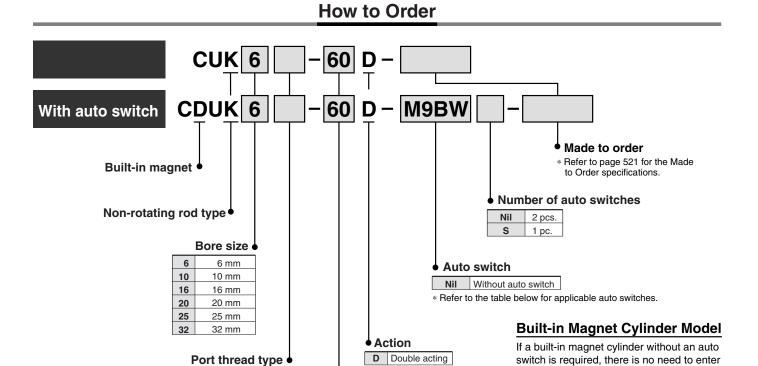
-**X**□ Technical

CUJ

CU

CQS

CQ2


RQ

CQM MU

Free Mount Cylinder: Long Stroke Type Non-rotating Rod, Double Acting, Single Rod

Series CUK

ø6, ø10, ø16, ø20, ø25, ø32

the symbol for the auto switch.

(Example): CDUK20-80D

Applicable Auto Switches/Refer to pages 1263 to 1371 for further information on auto switches.

Bore size

ø6, ø10, ø16, ø20, ø25

ø32

ø32

ø32

_	Applicable Auto Switches/Relei to pages 1263 to 1371 for further information on auto switches.																
			Clastrias	light	\A/:wise es	L	_oad voltag	ge	Auto switch model		Lead	wire	length	h (m)	Due suived		
T	ype	Special function	Electrical entry	Indicator	Wiring (Output)			DO 40 D		In-line	0.5	1	3	5	Pre-wired connector	Applica	ble load
				ngic	(Gatpat)			AC	Perpendicular	111-11116	(Nil)	(M)	(L)	(Z)			
		Gromm			3-wire (NPN)		5 V, 12 V		M9NV	M9N	•	•	•	0	0	IC	
Solid state switch	<u> </u>				3-wire (PNP)				M9PV	M9P	•	•	•	0	0	circuit	
	당당		Grommet	Yes	2-wire	24 V	12 V		M9BV	M9B	•	•	•	0	0	_	Relay,
3	ž ž	Diagnostic indication	Gioninet	res	3-wire (NPN)	24 V	5 V, 12 V		M9NWV	M9NW	•	•	•	0	0	IC	PLC
8	ດ "				3-wire (PNP)				M9PWV	M9PW	•	•	•	0	0	circuit	
		(2-color indication)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	0	_	
					3-wire		5 V		A96V	A96						IC	
2	호		Grommet	Yes	(NPN equivalent)		5 V		ASOV	A90				_	_	circuit	
ď	switch		Gionnie		2-wire 24 V		12 V	100 V	A93V	A93	•	_	•	_		_	Relay,
	0,			No	Z-WITE	wire 24 V	12 V	100 V or less	A90V	A90	•	-	•	-	_	IC circuit	PLC

Cylinder stroke (mm)

40, 50, 60

60, 70, 80, 90, 100

ø6, ø10, ø16

ø20, ø25, ø32

- st Since there are applicable auto switches other than the above, refer to page 538 for details.
- * For detail about auto switches with pre-wired connector, refer to pages 1328 to 1329.
- * Auto switches are shipped together but not assembled.

Symbol

Nil

ΤN

TF

Type

M5 x 0.8

Rc 1/8

NPT 1/8

G 1/8

Free Mount Cylinder: Long Stroke Type Non-rotating Rod, Double Acting, Single Rod Series CUK

Bore size (mm)	6	10	16	20	25	32	
Fluid			P	\ir			
Proof pressure			1.05	MPa			
Maximum operating pressure			0.7	MPa			
Minimum operating pressure	0.15 MPa 0.10 MPa 0.08 MI				MPa		
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing)						
Ambient and fluid temperature	With auto switch: -10 to 60°C (No freezing)						
Lubrication			Non	-lube			
Piston speed			50 to 50	00 mm/s			
Cushion			Rubber	bumper			
Rod end thread	Male thread						
Stroke length tolerance	⁺ 1.0 mm						
Rod non-rotating accuracy Note)	±0.8°				±0.5°		

Note) No load: Rod at retracted

JIS Symbol

Double acting, Single rod

Made to Order Specifications (For details, refer to pages 1395 to 1498.)

Symbol	Specifications					
-XB6	Heat resistant (-10 to 150°C)					
-XB7	Cold resistant (-40 to 70°C)					
-XB9	Low speed (10 to 50 mm/s)					
-XB13	-XB13 Low speed (5 to 50 mm/s)					
-XC19	Intermediate stroke (5 mm spacer)					
-XC22	Fluororubber seals					
-XC34	Non-rotating plate with work piece mounting screw (No extended part on the rod end)					

Standard Stroke

20, 25, 32

C(D)UK32-□D

(mm) Bore size (mm) Standard stroke (mm) 6, 10, 16 40, 50, 60

60, 70, 80, 90, 100

(747)

(799)

Mass/(): Denotes the values with D-A93.

Model		Stroke (mm)									
Wodel	40	50	60	70	80	90	100				
C(D)UK6-□D	49 (59)	55 (65)	61 (71)	_	_	_	_				
C(D)UK10-□D	71 (81)	79 (89)	87 (97)	_	_	_	_				
C(D)UK16-□D	102 (132)	114 (144)	126 (156)	_	_	_	_				
C(D)UK20-□D	_	_	243 (284)	267 (308)	291 (332)	315 (356)	339 (380)				
C(D)UK25-□D	_	_	405 (460)	440 (495)	475 (530)	510 (565)	545 (600)				

(695)

* For the auto switch mass, refer to page 1263.

Allowable Rotational Torque

Make sure that rotational torque is not applied to the piston rod of a long stroke type cylinder. If the rotation torque were applied unavoidably, refer to page 503 for details.

Tightening Torque

When mounting a CUK long stroke series, refer to page 484.

Theoretical Output

Specifications are the same as CU series double acting, single rod. Refer to page 484.

Auto Switch Mounting Position

For the auto switch mounting position of CDUK long stroke series, refer to page 488, since specifications are the same as standard type, double acting, single rod type.

CUJ

(g)

CQS

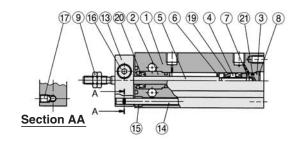
CQ2 RQ

CQM

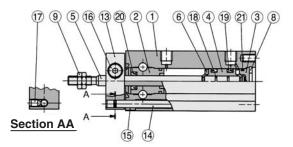
825 (903)

(851)

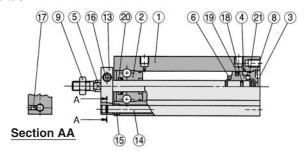
MU



Individual -X□ Technical


Series CUK

Construction


ø6

ø10

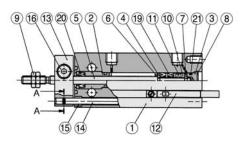
ø16 to ø32

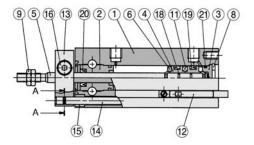
Component Parts

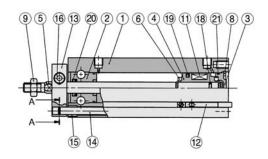
•••	5		
No.	Description	Material	Note
_ 1	Cylinder tube	Aluminum alloy	Hard anodized
2	Rod cover	Aluminum alloy	Hard anodized
3	Head cover	Brass	ø6 to ø10, Electroless nickel plated
	rieau covei	Aluminum alloy	ø16 to ø32, Chromated
	Piston	Brass	ø6 to ø10
4	PISION	Aluminum alloy	ø16 to ø32, Chromated
5	Piston rod	Stainless steel	
6	Bumper A	Urethane	
7	Bumper B	Urethane	
8	Retaining ring	Carbon tool steel	Phosphate coated
9	Rod end nut	Carbon steel	Nickel plated
10	Magnet holder	Brass	ø6

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Contents		
10	CU10D-PS			
16	CU16D-PS			
20	CU20D-PS	Set of nos. above 19, 20, 21.		
25	CU25D-PS			
32	CU32D-PS			

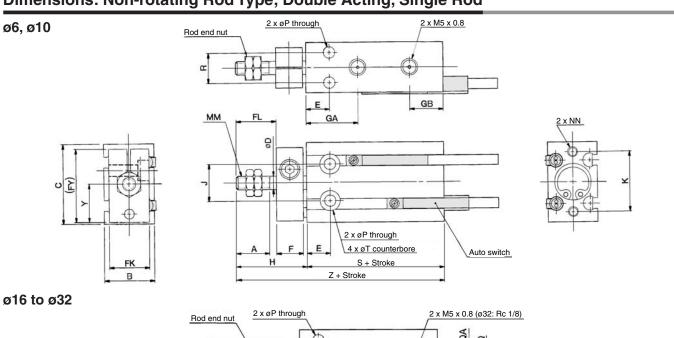


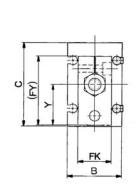

- \ast Seal kit includes 1, 2), 2). Order the seal kit, based on each bore size.
- * Seal kit includes a grease pack (10 g).

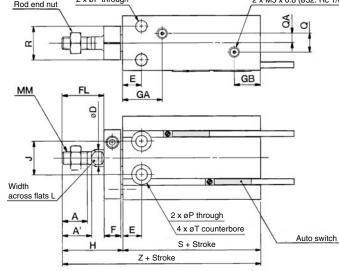

Order with the following part number when only the grease pack is needed.

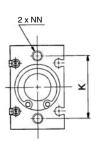
Grease pack part number: GR-S-010 (10 g)

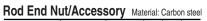
With auto switch

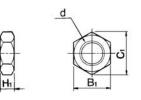



Component Parts


••••												
No.	Description	Material	Note									
11	Magnet	_										
12	Auto switch	_										
13	Non-rotating plate	Aluminum alloy	Nickel plated									
14	Guide rod	Stainless steel										
15	Bushing	Oil-impregnated sintered alloy	Black zinc chromated									
16	Hexagon socket head cap screw	Carbon steel	Black zinc chromated									
17	Hexagon socket head set screw	Carbon steel										
18	Piston gasket											
19*	Piston seal	NDD										
20*	Rod seal	NBR										
21*	Gasket											


Free Mount Cylinder/ Long Stroke Type Non-rotating Rod, Double Acting, Single Rod Series CUK


Dimensions: Non-rotating Rod Type; Double Acting, Single Rod



		July Wat	onan.	ouibo	11 01001
Part no.	Applicable bore size (mm)	d	Ηı	Bı	C ₁
NTP-006	6	M3 x 0.5	1.8	5.5	6.4
NTP-010	10	M4 x 0.7	2.4	7	8.1
NTJ-015A	16	M5 x 0.8	4	8	9.2
NT-015A	20	M6 x 1.0	5	10	11.5
NT-02	25	M8 x 1.25	5	13	15.0
NT-03	32	M10 x 1.25	6	17	19.6

Bore size (mm)	Α	A'	В	С	D	E	F	FL	FK	FY	GA	GB	н	J	к	L	ММ
6	7	_	13	22	3	7	8	9	11	20.5	15	10	18	10	17	_	M3 x 0.5
10	10	_	15	24	4	7	8	12	12	22	16.5	10	21	11	18	_	M4 x 0.7
16	11	12.5	20	32	6	7	8	17	13	28	16.5	11.5	26	14	25	5	M5 x 0.8
20	12	14	26	40	8	9	8	20	16	33	19	12.5	29	16	30	6	M6 x 1.0
25	15.5	18	32	50	10	10	10	22	20	43.5	21.5	13	33	20	38	8	M8 x 1.25
32	19.5	22	40	62	12	11	12	29	24	51.5	23	12.5	42	24	48	10	M10 x 1 25

Bore size	NN	Р	Q	QA	R	-	V	Without auto switc		With auto switch	
(mm)	ININ	Р	L C	QA	l n	'	T	S	Z	S	Z
6	M3 x 0.5 depth 5	3.2	_	_	7	6 depth 4.8	10.5	33	51	33	51
10	M3 x 0.5 depth 5	3.2	_	_	9	6 depth 5	11.5	36	57	36	57
16	M4 x 0.7 depth 6	4.5	4	2	12	7.6 depth 6.5	15.5	30	56	40	66
20	M5 x 0.8 depth 8	5.5	9	4.5	16	9.3 depth 8	19.5	36	65	46	75
25	M5 x 0.8 depth 8	5.5	9	4.5	20	9.3 depth 9	24.5	40	73	50	83
32	M6 x 1.0 depth 9	6.6	13.5	4.5	24	11 depth 11.5	30.5	42	84	52	94

D-□
-X□

CUJ

CU

CQS

CQ2

RQ

CQM

MU

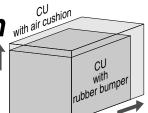
-X□ Technical data

Individual

Free Mount Cylinder with Air Cushion

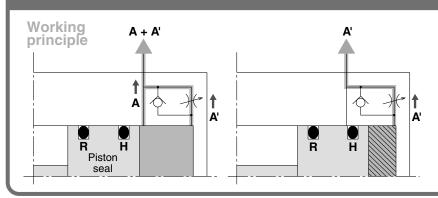
Series CU

New air cushion mechanism



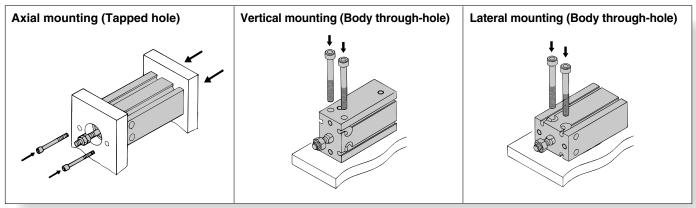
Extended dimensions (compared to the standard CU models) are hardly noticeable.

• Overall length: +1.5 to 7 mm with air cushion


• Overall height: +0 to 2 mm 1 No air cushion protrusion.

Overall width: not affected

	(mm)									
Bore	Extended of	dimensions								
size	Length	Height								
ø20	7	2								
ø25	1.5	0								
ø32	4	0								


Unique air cushion construction requires no cushion ring.

- ① When the piston is retracting, air is exhausted through both A and A' until piston seal H passes air passage A.
- 2 After piston seal H has passed air passage A, air is exhausted only through A'. The section marked with slanted lines becomes a cushion chamber, and an air cushion effect is
- 3 When air is supplied for the piston extension, the check valve opens and the piston extends with no delay.

Free mounting

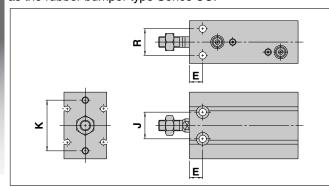
3 types of mounting orientations can be accommodated depending on the installation conditions.

Approximately 2.4 times of allowable kinetic energy

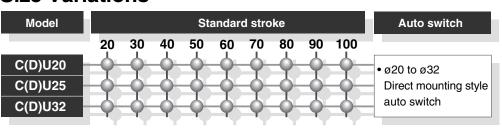
(Compared to the old Series CU with rubber bumper)

Improved allowable kinetic energy absorption.

Improved repeatability


When compared to rubber bumper type actuators, air cushion type cylinders are less likely to be affected by pressure fluctuations, and therefore better able to achieve a stable and smooth stroke.

Improved sound insulation (Reduced impact noise at the stroke end)


 Noise reduction of more than 11 dB is possible (compared to Series CU20 with rubber bumper).

Interchangeable mounting

Mounting dimensions (J, K, R, and E) are the same as the rubber bumper type Series $\,$ CU.

Size Variations

525

CUJ

CU

CQS

CQ2

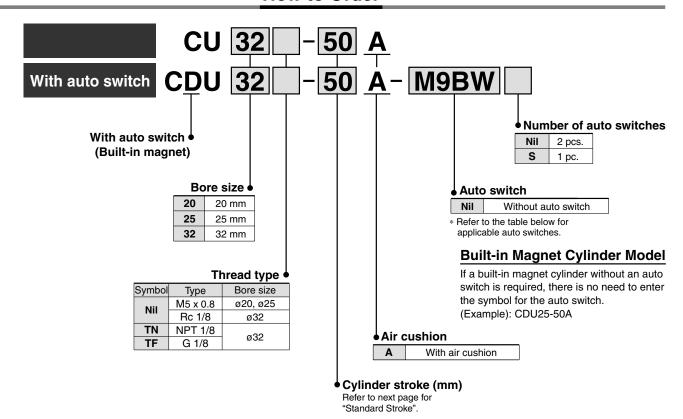
RQ

CQM

MU

D-□

-X□


Individual

Technical

Free Mount Cylinder with Air Cushion Series CU ø20, ø25, ø32

How to Order

Applicable Auto Switches (Patenta and 1990 to 1971 for first and the sinformation of the said and the said an

Αþ	plicable Auto Swi	CHES/Re	ter to	pages 1263 to	13/1 to	r further in	formation	on auto sw	litches.							
		Electrical	Indicator light	Miring	L	oad voltag	ge	Auto switc	Lead wire length (m)				Pre-wired			
Тур	Special function	entry	ator	(Output)	Wiring (Output)		OC AC P		In-line	0.5	1	3	5	connector	Applica	ble load
		0,	l gi	(Gaipai)	'	OC .	AC	Perpendicular	111-11116	(Nil)	(M)	(L)	(Z)	00111100101		
				3-wire (NPN)		5 V. 12 V		M9NV	M9N	•	•	•	0	0	IC	
횰_				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit	
Solid state switch		Grommet	Yes	2-wire	24 V	12 V		M9BV	M9B	•	•	•	0	0	_	Relay,
<u> </u>				3-wire (NPN)		5 V, 12 V	_	M9NWV	M9NW	•	•	•	0	0	IC	PLC
တိ	Diagnostic indication (2-color indication)			3-wire (PNP)				M9PWV	M9PW	•	•	•	0	0	circuit	
	(2-color indication)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	0	_	
				3-wire		5V		4001/ 400							IC	
t 6		Grommet	Yes	(NPN equivalent)	_	- 5V	-	A96V	A96					_	circuit	_
Reed		Gioillilet		2-wire 24 V	12 V	100 V	A93V	A93	•	_	•	_	_	_	Relay,	
, W			No		12 V	100 V or less	A90V	A90	•		•		_	IC circuit	PLC	

- * Lead wire length symbols: 0.5 m Nil (Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order.
- * Since there are applicable auto switches other than the above, refer to page 538 for details.
- * For detail about auto switches with pre-wired connector, refer to pages 1328 to 1329.
- * Auto switches are shipped together but not assembled.

Free Mount Cylinder with Air Cushion $Series \ CU$

Specifications

Туре	Pneumatic (Non-lube)
Fluid	Air
Proof pressure	1.0 MPa
Maximum operating pressure	0.7 MPa
Minimum operating pressure	0.08 MPa
Ambient and fluid temperature	Without auto switch: -10°C to 70°C (No freezing)
Ambient and naid temperature	With auto switch: -10°C to 60°C (No freezing)
Rod end thread	Male thread
Stroke length tolerance	+ 1.0
Piston speed	50 to 500 mm/s

Effective Cushion Length

Bore size (mm)	20	25	32
Effective cushion length (mm)	6.6	6.7	7.7

Standard Stroke

Bore size (mm)	Standard stroke (mm)
20, 25, 32	20, 30, 40, 50, 60, 70, 80, 90, 100

^{*} Intermediate strokes are also available upon receipt of order. Please contact SMC. Minimum stroke length is 20 mm.

Tightening Torque/ When mounting Series CU refer to the table below.

Bore size (mm)	Hexagon socket head cap screw size	Proper tightening torque (N·m)
20, 25	M5	5.10 ±10%
32	M6	8.04 ±10%

Allowable Kinetic Energy

Refer to "Selection" on page 532 regarding allowable kinetic energy.

Theoretical Output

				,					
Dava sina (11111)	Operating	Op	Operating pressure (MPa)						
Bore size (mm)	direction	0.3	0.5	0.7					
00	OUT	94.2	157	220					
20	IN	79.2	132	185					
05	OUT	147	246	344					
25	IN	124	206	288					
20	OUT	241	402	563					
32	IN	207	346	454					

Mass

Basic Mass

Dasic Mass	Dasic Mass											
Dava siza (mm)		Standard stroke (mm)										
Bore size (mm)	20	30	40	50	60	70	80	90	100			
20	186	208	230	252	274	296	318	340	362			
25	289	323	357	391	425	459	493	527	561			
32	464	512	560	608	656	704	752	800	848			

Additional Mass	(9
Bore size (mm)	Magnet
20	5
25	6

32

D
-X

Individual

Technical

CUJ

CU

CQS

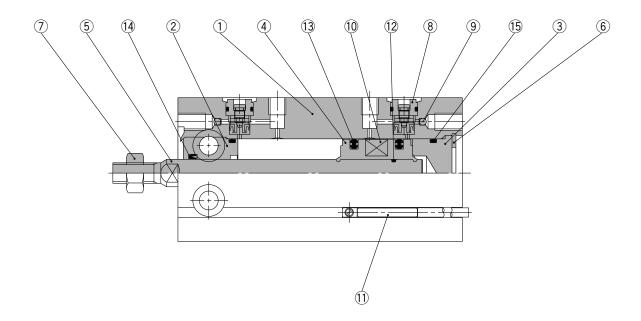
CQ2

RQ

CQM

MU

|data | 27



527

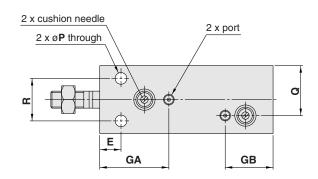
11

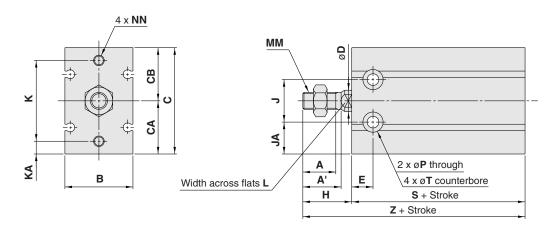
Series **CU**

Construction

Component Parts

No.	Description	Material	No. of pcs.	Note
1	Cylinder tube	Aluminum alloy	1	Hard anodized
2	Rod cover	Aluminum alloy	1	Hard anodized
3	Head cover	Aluminum alloy	1	Clear chromated
4	Piston	Aluminum alloy	1	Chromated
5	Piston rod	Stainless steel	1	
6	Retaining ring	Carbon tool steel	1	Phosphate coated
7	Rod end nut	Carbon steel	1	Nickel plated
8	Cushion needle assembly		(2)	
9	Steel ball	Carbon steel	2	
10	Magnet		1	
11	Auto switch	_	(2)	
12	Piston gasket	NBR	1	
13*	Piston seal	NBR	2	
14*	Rod seal	NBR	1	
15*	Gasket	NBR	1	


Replacement Parts: Seal Kit


Bore size (mm)	Kit no.	Contents
ø20	CU20A-PS	
ø25	CU25A-PS	Set of nos. above (13), (14), (15).
ø32	CU32A-PS	⊌, ড , ⊌.

^{*} Seal kit includes 13, 14, 15. Order the seal kit, based on each bore size.

^{*} Seal kit includes a grease pack (10 g).
Order with the following part number when only the grease pack is needed.
Grease pack part number: GR-S-010 (10 g)

Dimensions

CUJ CU

CQS

CQ2

RQ

JΑ CQM 12 15

(mm)

MU

32		1/8		19.5	22	40	62	31	31	12	11	35	25	27	24	19
Bore size (mm)	К	КА	L	ММ		NN		Р	Q	R		г	S	Z	Standar	d stroke
20	30	5	6	M6 x 1.0	М	5 x 0.8 de	epth 8	5.5	13	16	9.3 de	epth 8	53	72	00 00 4	2 50 60
25	38	6	8	M8 x 1.25	М	5 x 0.8 de	epth 8	5.5	23.5	20	9.3 de	epth 9	51.5	74.5	20, 30, 40	
22	10	7	10	M10 v 1 05	N.4	E v 1 0 d	onth O	6.6	20	24	11 don	th 11 E	EG	0.2	70,80,	90, 100

6.6

CA

20

25

СВ

22

25

29

D

8

10

24

Ε

9

10

11 depth 11.5

GA

29

32.5

GB

27

22.5

56

Н

19

23

83

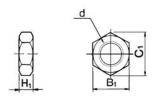
J

16

20

Rod End Nut/Accessory

48


Bore size

(mm)

20

25

32

Port size

M5 x 0.8

M5 x 0.8

Α

12

10

15.5

M10 x 1.25

A'

14

18

В

26

32

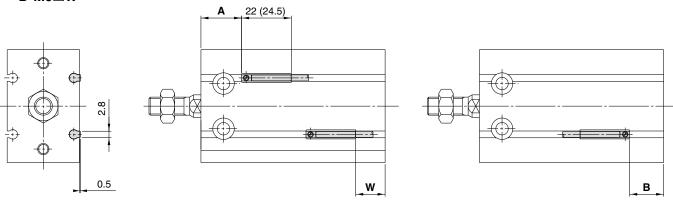
M6 x 1.0 depth 9

С

42

50

		Material: Carbon steel				
Part no.	Applicable bore size (mm)	d	Ηı	В1	C ₁	
NT-015A	20	M6 x 1.0	5	10	11.5	
NT-02	25	M8 x 1.25	5	13	15.0	
NT-03	32	M10 x 1.25	6	17	19.6	


D-□
-X□
Individual -X□

Technical

Series CU


Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

D-A9□ D-M9□ D-M9□W

(): Denotes the values of D-A93.

D-A9□V D-M9□V D-M9□WV

(): Denotes the values of D-M9 \square V, D-M9 \square WV.

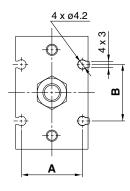
Bore size	D-A9□, D-A9□V			D-M9□, D-M9□W			D-M9□V, D-M9□WV		
(mm)	Α	В	W	Α	В	W	Α	В	W
20	18	15	13 (10.5)	22	19	9	22	19	11
25	20	11	9 (6.5)	24.5	15	5	24.5	15	7
32	22.5	13.5	11.5 (9)	26.5	17.5	7.5	26.5	17.5	9.5

Note 1) Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation.

Note 2) Values in () are dimensions for D-A93 type.

Operating Range

			(mm)		
Cwitch model	Bore size (mm)				
Switch model	20	25	32		
D-A9□, A9□V	11	12.5	14		
D-M9□, M9□V D-M9□W, M9□WV	7	7	7.5		


 $[\]ast$ Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm30\%$ dispersion).

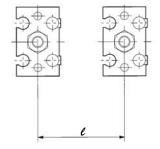
530

It may vary substantially depending on an ambient environment.

Auto Switch Rail Position



		(mm)
Bore size (mm)	Α	В
20	21	23
25	27	25
32	35	27


Caution on Proximity Installation

When free mounting cylinders equipped with auto switches are used, the auto switches could activate unintentionally if the installed distance is less than the dimensions shown in the table. Therefore, make sure to provide a greater clearance. Due to unavoidable circumstances, if they must be used with less distance than the dimensions given in the table, the cylinders must be shielded. Therefore, affix a steel plate or a magnetic shielding plate (MU-S025) to the area on the cylinder that corresponds to the adjacent auto switch. (Please contact SMC for details.) Auto switches may malfunction if a shielding plate is not used.

Dimensions of shielding plate (MU-S025) that is sold separately are indicated as reference.

Material: Ferrite stainless steel, Thickness: $0.3 \, \text{mm}$ The product can be attached to the cylinder since the bottom side is a seal type.

Bore size (mm)	Mounting pitch ℓ (mm)
20	40
25	46
32	56

CUJ

cqs

CQ2

RQ

CQM

MU

D-□ -X□

Individual
-X

Technical

Technical data

Series CU Specific Product Precautions

Be sure to read before handling. Refer to front matters 54 and 55 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Installation and Removal of Retaining Rings

△Caution

- Use appropriate pliers (Type C retaining ring installing tool) for installation and removal of retaining rings.
- 2. Even when using appropriate pliers (Type C retaining ring installing tool), proceed with caution as there is a danger of the retaining ring flying off the end of the pliers (tool) and causing bodily injury or damage to nearby equipment. After installation, make sure that the retaining ring is securely seated into the retaining ring groove before supplying air.

Mounting

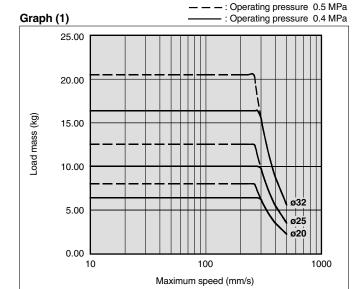
. Caution

1. Refer to the below table for mounting cylinders.

Tightening Torque

Bore sizes (mm)	Hexagon socket head cap screw (mm)	Proper tightening torque (N·m)
20, 25	M5	5.10 ±10%
32	M6	8.04 ±10%

Selection


△Caution

1. Operate the cylinder to the stroke end.

When the stroke is restricted by an external stopper or a clamped workpiece, sufficient cushioning and noise reduction may not be achieved.

 Strictly observe the limiting ranges for load mass and maximum speed (Graph (1)). Also, the limiting ranges provided here are based on the condition that the cylinder is operated to the stroke end with a proper cushion needle adjustment.

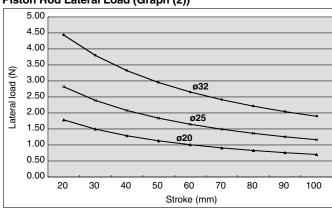
If operated beyond the limiting ranges, excessive impact will occur and this may cause damage to equipment.

Selection

3. Adjust the cushion needle to reduce excessive kinetic energy from the piston impact at the stroke end by allowing it to absorb sufficient kinetic energy during the cushion stroke.

If due to improper adjustment, the piston impacts the stroke end with excessive kinetic energy (values above those given in Table (1)), an excessive impact will occur and this may cause damages to equipment.

Table (1) Allowable Kinetic Energy at Piston Impact


	20	25	32				
Piston speed	50 to 500 mm/s						
Allowable kinetic energy	0.055	0.09	0.15				

(J)

 Strictly observe the limiting ranges for the piston rod lateral load (Graph (2)).

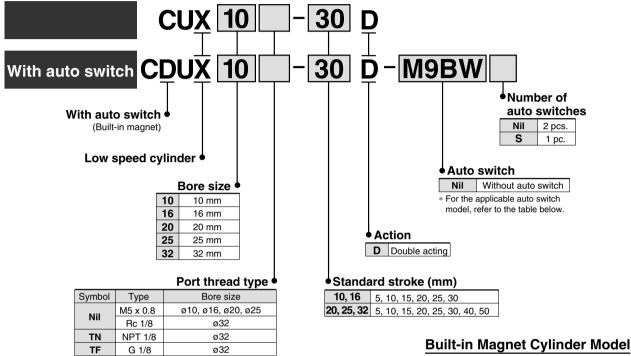
If operated beyond the limiting ranges, equipment life may be reduced or damage to equipment may occur.

Piston Rod Lateral Load (Graph (2))

Cushion Needle Adjustment

⚠ Caution

 Keep the adjustment range for the cushion needle between the fully closed position and the rotations shown below.


	Rotations
ø20 to ø32	2.5 rotations or less

Use a 3 mm flat head watchmakers' screwdriver to adjust the cushion needle. The adjustment range for the cushion needle must be between the fully closed position and the open position ranges indicated in the above table. A retaining mechanism prevents the cushion needle from slipping out; however, it may spring out during operation if it is rotated beyond the ranges shown above.

Low Speed Cylinder Double Acting, Single Rod Series CUX ø10, ø16, ø20, ø25, ø32

How to Order

If a built-in magnet cylinder without an auto switch is required, there is no need to enter the symbol for the auto switch. (Example) CDUX20-25D

Applicable Auto Switch/Refer to pages 1719 to 1827 for further information on auto switches.

		Ela atria al	ight	\A(::	L	oad volta	ge	Auto swit	ch model	Lead	wire I	ength	n (m)	Due sudue d		
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	DC		AC	Perpendicular	endicular In-line		1 (M)	3 (L)	5 (Z)	Pre-wired connector	Applical	ole load
				3-wire (NPN)		5 V. 12 V		M9NV	M9N	•	•	•	0	0	IC circuit	
- #				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	io circuit	
state		Grommet		2-wire 24 V	12 V	12 V	M9BV	M9B	•		•	0	0	_	Relay,	
Solid	Diagnostic indication (2-color indication)	dronninet	Yes	3-wire (NPN)	24 V	5 V. 12 V	_	M9NWV	M9NW	•	•	•	0	0	IC circuit	PLC
S				3-wire (PNP)		5 V, 12 V		M9PWV	M9PW	•		•	0	0	io circuit	
	(2-color indication)			2-wire		12 V		M9BWV	M9BW	•		•	0	0	_	
Reed switch		Grammat	Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	_	_	IC circuit	_
% ĕ.ĕ	_	Grommet		Queiro	24 V	12 V	100 V	A93V	A93	•	_	•	_	_	_	Relay,
0,			No	2-wire		12 V	100 V or less	A90V	A90	•	_	•	_	_	IC circuit	PLC

^{*} Lead wire length symbols: 0.5 m ····· Nil (Example) M9NW (Example) M9NWM 1 m M (Example) M9NWL 5 m Z (Example) M9NWZ

^{*} Solid state auto switches marked with "O" are produced upon receipt of order.

^{*} Since there are other applicable auto switches than listed, refer to page 1128 for details.

^{*} For details about auto switches with pre-wired connector, refer to pages 1784 and 1785. * Auto switches are shipped together (not assembled).

Low Speed Cylinder Double Acting, Single Rod Series CUX

Specifications

JIS Symbol

Double acting, Single rod

Bore size (mm)	10	16	20	25	32					
Fluid	Air									
Proof pressure			1.05 MPa							
Maximum operating pressure	0.7 MPa									
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing) With auto switch: -10 to 60°C (No freezing)									
Lubrication		Not re	equired (Non-	·lube)						
Piston speed		,	ø16: 1 to 300 ø32: 0.5 to 30							
Cushion		Rubber	bumper on bo	oth ends						
Rod end thread			Male thread							
Stroke length tolerance			+1.0 Note) 0							
Mounting			Basic style							

Note) Tolerance +1.0

Minimum Operating Pressure

Bore size (mm)	10	16	20	25	32
Min. operating pressure (MPa)	0.06	0.06	0.05	0.05	0.05

Standard Stroke

Bore size (mm)	Standard stroke (mm)				
10, 16	5, 10, 15, 20, 25, 30				
20, 25, 32	5, 10, 15, 20, 25, 30, 40, 50				

∧ Precautions

Be sure to read before handling.

Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Mounting

⚠Caution

1. Tightening the cylinder beyond the range of the indicated torque (shown in the table below) may affect operation. Apply Loctite® (no. 242, Blue) to the mounting threads.

Bore size (mm)	Hexagon socket head (mm)	Proper tightening torque (N·m) (Cylinder body)				
10	M3	0.54 ±10%				
16	M4	1.23 ±10%				
20, 25	M5	2.55 ±10%				
32	M6	4.02 ±10%				

Operating Precautions

△Warning

1. It might not be able to control CUX10 by meter-out at a low speed operation.

⚠Caution

1. For CUX10, up to 0.1 Ne/min (ANR) of internal leakage is anticipated due to cylinder structure.

Maintenance

∧Caution 1. Replacement parts/Seal kit

Order it in accordance with the bore size.

Bore size (mm)	Kit no.	Contents		
16	CUX16-PS	Piston seal:	1	рс.
20	CUX20-PS	Rod seal:	1	рс.
25	CUX25-PS	Gasket:	1	рс.
32	CUX32-PS	Grease pack (10 g):	1	рс.

* It is impossible to replace seals in bore size 10 mm.

2. Grease pack

When maintenance requires only grease, use the following part numbers to order.

Grease pack part no.:

GR-L-005 (5 g)

GR-L-010 (10 g)

GR-L-150 (150 g)

C□X

REA

REB

REC

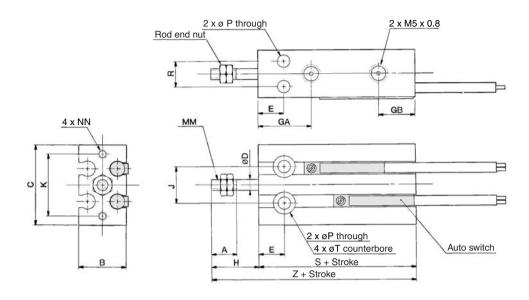
CUY

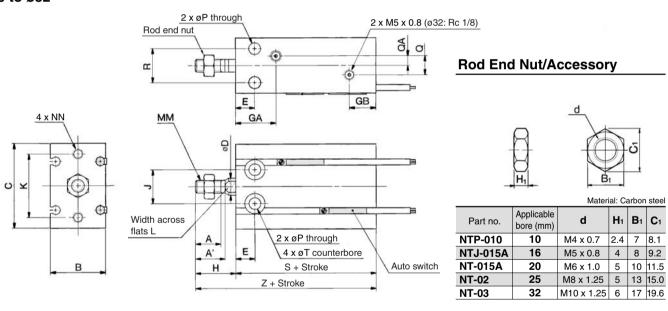
MQ RHC

RZQ

D-□

-X□ Individual




Series CUX

Dimensions: Double Acting, Single Rod

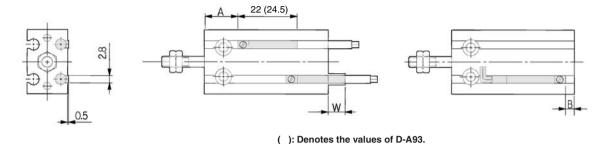
ø10

ø16 to ø32

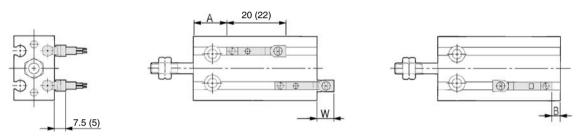
																	(mm)
Bore size (mm)	Α	A'	В	С	D	E	GA	GB	н	J	K	L	ММ	NN	Р	Q	QA
10	10	_	15	24	4	7	16.5	10	16	11	18	_	M4 x 0.7	M3 x 0.5 depth 5	3.2	_	_
16	11	12.5	20	32	6	7	16.5 Note)	11.5	16	14	25	5	M5 x 0.8	M4 x 0.7 depth 6	4.5	4	2
20	12	14	26	40	8	9	19	12.5	19	16	30	6	M6 x 1.0	M5 x 0.8 depth 8	5.5	9	4.5
25	15.5	18	32	50	10	10	21.5	13	23	20	38	8	M8 x 1.25	M5 x 0.8 depth 8	5.5	9	4.5
32	19.5	22	40	62	12	11	23	12.5	27	24	48	10	M10 x 1.25	M6 x 1.0 depth 9	6.6	13.5	4.5

Bore siz	ze	R	_	Without a	uto switch	With auto switch		
(mm)		n	•	S	Z	S	Z	
10		9	6 depth 5	36	52	36	52	
16		12	7.6 depth 6.5	30	46	40	56	
20		16	9.3 depth 8	36	55	46	65	
25		20	9.3 depth 9	40	63	50	73	
32		24	11 depth 11.5	42	69	52	79	

Note) 5 stroke (CUX16-5D): 14.5 mm



Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height


D-A9□

D-M9□

D-M9□W

D-A9□ V D-M9□ V D-M9□WV

(): Denotes the values of D-A9□V.

CDU Double Acting, Single Rod

CDU Double Act	CDU Double Acting, Single Rod (mm)													
Bore size	D-A9□, D-A9□V			D-M9	9□, D-M9	Ð□W	D-M9□V, D-M9□WV							
(mm)	Α	В	W	Α	В	W	Α	В	W					
10	12.5	3.5	-1.5 (1)	16.5	7.5	2.5	16.5	7.5	0.5					
16	16	4	-2 (0.5)	20	8	1.5	20	8	-0.5					
20	20	6	-4 (-1.5)	24	10	0	24	10	-2					
25	22.5	7	-5.5 (-3)	26.5	11	-1.5	26.5	11	-3.5					
32	23.5	8.5	-6.5 (-4)	27.5	12.5	-2.5	27.5	12.5	-4.5					

Note 1) Figures in the table above are used as a reference when mounting the auto switches for stroke end detection.

In the case of actually setting the auto switches, adjust them after confirming their operation.

Note 2) Negative figures in the table W indicate an auto switch is mounted inward from the edge of the cylinder body. Note 3) In the case of the 5 stroke or the 10 stroke, there are times in which the switch will not turn OFF or 2 switches will turn ON simultaneously due to their movement range. Therefore, set the position approximately 1 to 4 mm outward from the values given in the table above. Then, perform an operation inspection to make sure that the switches operate normally (if 1 switch is used, make sure that it turns ON and OFF properly; if 2 switches are used, make sure that both switches turn ON).

Note 4) () in column W is the dimensions of D-A93.

Operating Range

					(mm)						
Auto switch model	Bore size (mm)										
Auto switch model	10	16	20	25	32						
D-A9□, A9□V	6	9	11	12.5	14						
D-M9□, M9□V D-M9□W, M9□WV	4	5.5	7	7	7.5						

^{*} Since this is a guideline including hysteresis, not meant to be guaranteed. (assuming approximately ±30% dispersion.)

There may be the case it will vary substantially depending on an ambient environment.

REA

REB

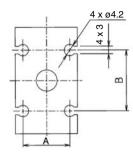
REC

C T

C□X

MQ

RHC


RZQ

D-□

-X□ Individual -X□

Series CUX

Auto Switch Groove

r							١
	r	۲	٦	r	Υ	١	ľ

Bore size (mm)	Α	В
10	10.3	13
16	15	18
20	21	23
25	27	25
32	35	27

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted.

* Normally closed (NC = b contact), solid state auto switches (D-F9G, F9H type) are also available. For details, refer to page 1746.

Caution on Proximity Installation

When free mounting cylinders equipped with auto switches are used, the auto switches could activate unintentionally if the installed distance is less than the dimensions shown in the table. Therefore, make sure to provide a greater clearance. Due to unavoidable circumstances, if they must be used with less distance than the dimensions given in the table, the cylinders must be shielded. Therefore, affix a steel plate or a magnetic shielding plate (MU-S025) to the area on the cylinder that corresponds to the adjacent auto switch. (Please contact SMC for details.) Auto switches may malfunction if a shield plate is not used.

Bore size (mm)	Mounting pitch ℓ (mm)		
10	30		
16	33		
20	40		
25	46		
32	56		

Dimensions of shielding plate (MU-S025) that is sold separately are indicated as reference.

Material: Ferrite stainless steel, Thickness: 0.3 mm Since the back side is treated with adhesive, it is possible to attach to the cylinder.

Related Products: Speed Controller for Low Speed Operation

The effective area of controlled flow is approximately 1/10 of the standard type. These controllers are suitable for controlling the speed of microspeed cylinders. The dual type speed controller is especially suitable for cylinders with a small bore size.

Elbow/Universal Type

Air Flow/Effective Area

Model		AS12□1FM-M5 AS13□1FM-M5	AS22□1FM-□01 AS23□1FM-□01		AS22□1FM-□02 AS23□1FM-□02		
Tubing	Metric size	ø3.2, ø4, ø6	ø3.2, ø4	ø6, ø8	ø4	ø6	ø8, ø10
O.D.	Inch size	ø1/8", ø5/32", ø3/16" ø1/4"	ø1/8", ø5/32"	ø3/16", ø1/4" ø5/16"	ø5/32"	ø3/16"	ø1/4", ø5/16" ø3/8"
Controlled	Air flow (&min (ANR))	7	1	2		38	
flow	Effective area (mm²)	0.1	0.2		0.6		
Free flow	Flow rate (dmin (ANR))	100	180	230	260	390	460
	Effective area (mm ²)	1.5	2.7	3.5	4	6	7

Note) Supply pressure: 0.5 MPa, Temperature: 20°C

In-line Type

Air Flow/Effective Area

	Model	AS1001FM	AS20	01FM	AS20	51FM
Tubing	Metric size	ø3.2, ø4, ø6	ø4	ø6	ø6	ø8
O.D.	Inch size	ø1/8", ø5/32", ø3/16" ø1/4"	ø5/32"	ø3/16", ø1/4"	ø3/16"	ø1/4", ø5/16"
Controlled	Air flow (dmin (ANR))	7	12		38	
flow	Effective area (mm²)	0.1	0.2		0.6	
Free flow	Flow rate (dmin (ANR))	100	130	230	290	460
	Effective area (mm²)	1.5	2	3.5	4.5	7

Note) Supply pressure: 0.5 MPa, Temperature: 20°C

Elbow Type (Metal body)

Air Flow/Effective Area

<u></u>								
Model			AS1	2□0M	AS22□0M-□01		AS22□0M-□02	
Cylinder side		M5 x 0.8 10-32 UNF		R 1/8	NPT 1/8	R 1/4	NPT 1/4	
Port size		Tube side	IVIS X U.8	10-32 UNF	Rc 1/8	INF 1/0	Rc 1/4	INF 1/4
Controlled flow	Air flow (dmin (ANR))		-	7	1	2	3	38
Controlled now	Effective area (mm²)		0).1	C	.2	0	.6
Free flow	Flow rate (dmin (ANR))		105		280		420	
Free flow	Effective	area (mm²)	1	.6	4	.3	6	.5

Note) Supply pressure: 0.5 MPa, Temperature: 20°C

Dual Type

Air Flow/Effective Area

Air Flow/Ellective Area							
	Model	ASD230FM-M5	SD230FM-M5 ASD330FM-□01		ASD430FM-□02		
	Metric size	ø4, ø6	ø6, ø8	ø6	ø8, ø10		
Tubing O.D.	Inch size	ø1/8", ø5/32" ø3/16", ø1/4"	ø3/16", ø1/4"		ø1/4", ø5/16" ø3/8"		
Controlled flow	Air flow (//min (ANR))	7	12		38		
(Free flow)	Effective area (mm²)	0.1	0.2		0.6		

Note) Supply pressure: 0.5 MPa, Temperature: 20° C

C□Y

REA

REB

REC

MQ

RHC

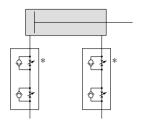
RZQ

D-□

-X□ Individual -X□

Low Speed Cylinder Specific Product Precautions

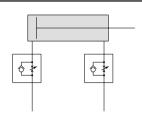
Be sure to read before handling.


Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Recommended Pneumatic Circuit

⚠ Warning

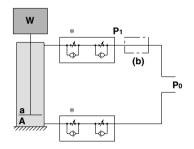
Horizontal Operation


I

Dual speed controller

Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip. More stable low speed operation can be achieved than meter-in circuit alone.

П

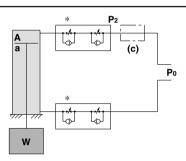


Meter-in speed controller

Meter-in speed controllers can reduce lurching while controlling the speed. The two adjustment needles facilitate adjustment.

Vertical Operation

I


- (1) Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.*
- (2) Depending on the size of the load, installing a regulator with check valve at position (b) can deduce lurching during descent and operation delay during ascent.

As a guide,

when W + Poa>PoA,

adjust P1 to make W + P1a = P0A.

II

- (1) Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.*
- (2) Installing a regulator with check valve at position (c) can reduce lurching during descent and operation delay during ascent.

As a guide,

adjust P_2 to make $W + P_2A = P_0a$.

W: Load (N) Po: Operating pressure (MPa) P1, P2: Reduced pressure (MPa) a: Rod side piston area (mm²) A: Head side piston area (mm²)

⚠ Warning

Since C J2X, C UX10 are subject to internal leakage due to their construction, the speed may not be fully controlled with the meter-out controller (*) during low speed operation.

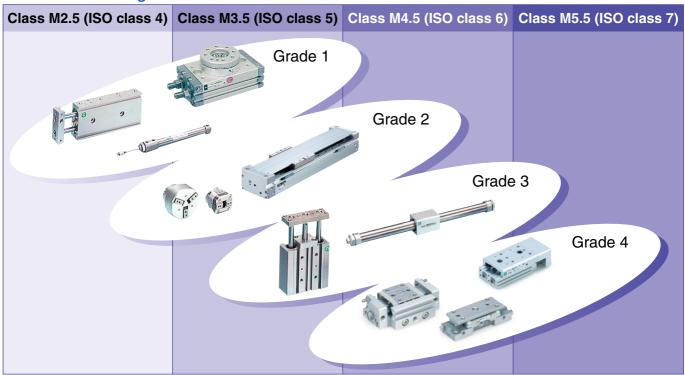
Selection

⚠ Caution

- 1. Operate within the standard strokes.
 - Operating with the stroke exceeding the standard stroke may cause malfunction.
- 2. Provide a construction that does not apply a lateral load to the cylinder.
 - Applying a lateral load to the cylinder may cause malfunction.
- **3. Do not use the product at a high frequency.** Use it at 30 cpm or less as a guideline.
- 4. Do not wipe out the grease in the sliding part of the air cylinder.

Doing so forcefully may cause malfunction.

Pneumatic Circuit


⚠ Caution

- The piping length between the speed controller and the cylinder port must be kept as short as possible.
 If the speed controller and the cylinder port are far apart,
 - If the speed controller and the cylinder port are far apart, speed adjustment may be unstable.
- Use a low speed controller to easily adjust for low speed operation or a dual speed controller (Series ASD) to prevent cylinders from popping out.
 - (When the low speed controller is used, the maximum speed may be limited.)

SMC Pneumatic Clean Series

Particle generation level of SMC pneumatic clean series equipment can be classified into 1-4 grades by the particle generation measurement test, and each equipment can be used according to the clean room cleanliness class.

The view above shows an image. Refer to front matter 13 to 22 and the specifications for particle generation grade of each equipment.

Clean Series

Series 10-/11-/12-/13-

Available for clean environment.

Particle generation in a clean room can be prevented.

Applicable model

Actuator, (Air cylinder, Rotary actuator, Air gripper), Directional control valve, Flow control equipment, Filter & Pressure control equipment, Fittings & Tubing, Air preparation equipment, Pressure switch, Clean gas filter Note) 11-/12-/13- are available only for actuators.

Special Clean Series

Special clean series pursues improvement of cleanliness than the clean series.

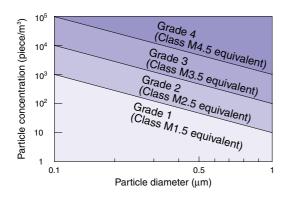
This series was developed considering construction, material and assembly environment for use in a clean environment.

Applicable model

Clean rodless cylinder, Clean regulator, Clean one-touch fitting, Clean tubing, Clean gas filter

Copper, Fluorine, and Silicon free + Low particle generation

For the environment in which the use of copper, fluorine and silicon are restricted. The same structure as clean series. (Grease and package style are different.)


Applicable model

Actuator (Air cylinder, Rotary actuator, Air gripper), Directional control valve, Flow control equipment, Pressure control equipment, Fittings & Tubing

Note) 22-: Available only for actuators.

Particle generation grade classification

Cleanliness class

SMC	Fed.Std.209E SI unit	ISO 14644-1
Grade 1	M1.5	ISO class 3
Grade 2	M2.5	ISO class 4
Grade 3	M3.5	ISO class 5
Grade 4	M4.5	ISO class 6
	M5.5	ISO class 7
	M6.5	ISO class 8

The grade classification is the SMC original method. The smaller the grade no., the less the particle generation.

The upper concentration limit of the cleanliness class based on Fed. Std. 209E-1992 is shown in parentheses.

Refer to Front matter 23 "Particle generation measuring method" and Front matter 24 "Comparison of cleanliness standards" for details.

Note) Do not use one-touch fittings 10-KQ (including solenoid valves with built-in one-touch fittings and speed controllers with one-touch fittings) in Grade 1 or Grade 2 areas because internal pressure change may move the collet chuck slightly, which may cause particle generation. This does not apply to insert fittings (KF), miniature fittings (M, MS), clean one-touch fittings (KP,KPQ,KPG) and speed controllers with clean one-touch fittings (AS-FPQ/FPG).

No dust is carried into the clean room.

After inspection, products are blown with high purity air (clean bench/class M3.5) in a clean environment. Products are sealed and shipped in anti-static double bags.

10-/11-/12-/13- (Clean series.) Products assembled in a clean room (Special clean series) Assembly and inspection in a workshop Clean booth Class M3.5 Parts cleaning Clean room Class M6.5 Wipe the surface with alcohol to remove oil. Assembly and inspection Clean room Class 100.000 Clean booth Class M3.5 Clean bench Class M3.5 Internal packaging after giving blow to the surface with clean air (countermeasure against static electricity) in a clean room Class M5.5 Double packaging Clean room Class M6.5 External packaging (double packaging) Shipment Shipment

21-/22-series are packed in an usual manner (assembly and inspection in a workshop — packaging — shipment). Please contact SMC for clean packaging.

Basic specifications of actuator

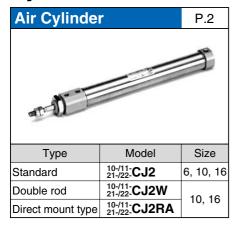
	Series 10-	Series 11-	Serie	es 12-		
	Double seal type / release to atmosphere	· Single seal type / vacuum suction	· Guide cylinder · Dual rod cylinder	· Rodless cylinder		
Construction	Relief port Bushing Rod seal Rod seal	Vacuum port (vacuum suction) Rod seal	Double seal type / release to atmosphere (Series 10- equivalent) and specially treated guide Ball bushing guide Linear guide	Specially treated cylinder tube exterior Cylinder tube		
Restricted material			No			
Grease	Fluorine grease					
Assembly environment	General environment (Assembly and inspection in a workshop)					
Packaging style	Cle	Clean packaging: Products are sealed in anti-static double bags after giving				

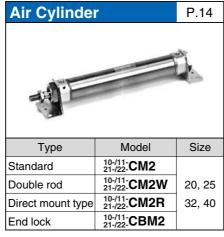
Basic specifications of other equipment

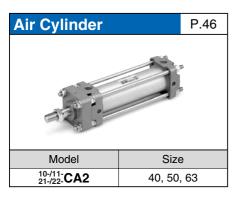
	Serie	s 10-		
Construction	Directional control valve Main valve and pilot valve common exhaust Pressure control equipment Relief port With fitting in bleed port	Drain guide With female thread Fitting, speed controller, pressure switch, etc. have the same structure as those of standard.	Clean regulator All wetted parts are made of stainless steel, FPM and PTFE, and exterior metal parts are made of anodized aluminum, which provides high corrosion resistance.	Clean one-touch fittings(for blow) Wetted part Nonmetal Polypropylene resin Clean tubing Polyolefin Resin
Restricted material	N	o		
Grease	Fluorine grease		_	_
Assembly environment	General environment (Assembly and inspection in a workshop)			Parts are cleaned and
Packaging style	Clean packaging: Products are sealed in anti-static double bags after			

Series 13-	Special clean series	Series 21-	Series 22-		
Guide cylinder Air slide table	· Clean rodless cylinder	Double seal type / release to atmosphere	· Single seal type/ vacuum suction		
Single seal type/ vacuum suction (Series 11- equivalent) and specially treated guide Ball bushing guide Linear guide	No contact between the cylinder tube exterior and the slider interior Linear guide Special treatment	Relief port Bushing Rod seal Rod seal	Vacuum port (vacuum suction) Rod seal		
	No	Copper, fluorine and silicon-free			
	Fluorine grease	Lithium soap base grease			
	Parts are cleaned and assembled in a clean room.		General environment (Assembly and inspection in a workshop)		
blow to the surface wit	h clean air.	Standard packaging Note)			

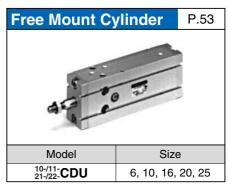
Note) Contact SMC for clean packaging.

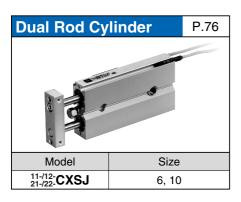

Special clean		Serie	es 21-	
Clean one-touch fittings(for drive system air piping) Clean speed controller Polypropylene resin Metal part Brass (Electroless nickel plated) or Stainless steel 304	Possible to exhaust in a clean room. Clean gas filter PTFE membrane element Possible to exhaust in a clean room.	Directional control valve Pressure control equipment The same construction as Series 10-	Clean one-touch fittings (for drive system air piping) Clean speed controller No seal to the thread parts Available for uni thread. (Made to Order)	
No		Copper, fluorin	e and silicon-free	
Fluorine grease	Fluorine grease —		base grease	
assembled in a clean ro	om.	General environment (Assembly and inspection in a workshop)	Parts are cleaned and assembled in a clean room.	
giving blow to the surfac	e with clean air.	Standard packaging Note)		

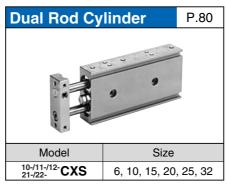

Note) Contact SMC for clean packaging.

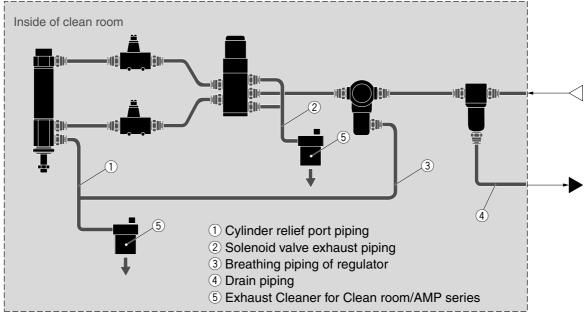

Clean Series INDEX

Cylinder



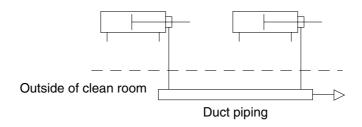






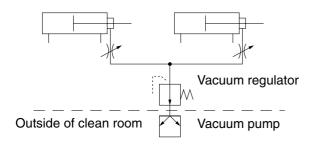
System Circuit in Clean Room

Following are the actuator driving system and circuit configuration of blow system employed to reduce particle generation when using pneumatic equipment in a clean room.

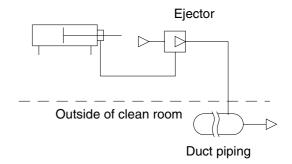

Actuator driving system

Cylinder relief port piping

Series 10-/12-/21- (atmospheric release type)


Connect the relief port piping with the dedicated duct piping installed outside the clean room or with the exhaust cleaner for clean room/AMP series.

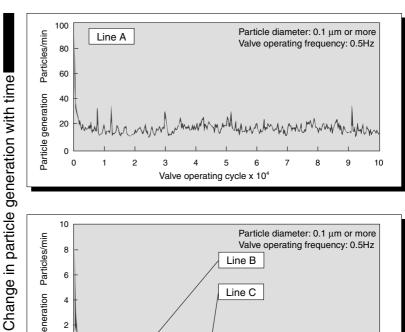
Series 11-/13-/22- (Vacuum suction type)

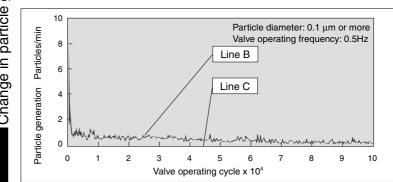

With a vacuum pump

When several air cylinders are used together or a model with high vacuum suction flow is used.

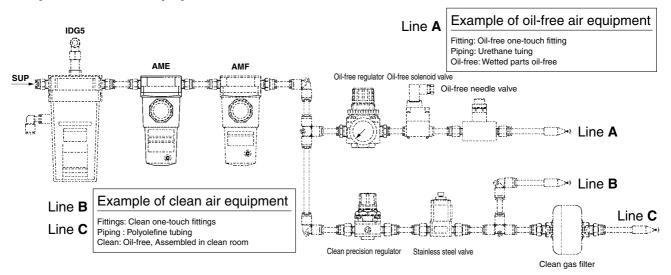
With an ejector

When a few air cylinders are locally used.

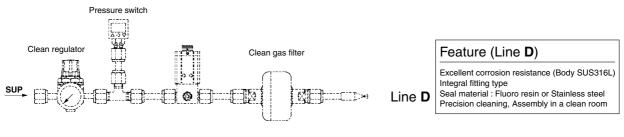

System Circuit in Clean Room


Clean blow system

Example of equipment to suit each clean blow grade

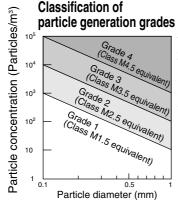

Line A: For oil-free air blow Line B: For clean blow Line C: For clean blow (With clean gas filter)

Line D: For N₂ blow



• Example of air line equipment

Example of N₂ equipment


How to Use Clean Series

The position of the pneumatic equipment to the workpiece is determined by the particle generation degree.

Particle generation grade no. of the pneumatic equipment

The article concentration grade no. around the workpiece

The grade classification is the SMC original method. The smaller the grade number, the less the particle generation. The upper concentration limit of the cleanliness class based on Fed. Std. 209E-1992 is shown in parentheses. (Refer to Front matter 23 "Particle generation measuring method"and Front matter 24 "Comparison of cleanliness standards" for details.)

Note) Do not use one-touch fittings 10-KQ (including solenoid valves with built-in one-touch fittings and speed controllers with one-touch fittings) in Grade 1 or Grade 2 areas because internal pressure change may cause slight move of the collet chuck, which may cause particle generation. This does not apply to insert fittings (KF), miniature fittings (M, MS), clean one-touch fittings (KP, KPQ, KPG) and speed controllers with clean one-touch fittings (AS-FPQ/FPG).

Cleanliness class

SMC	Fed.Std.209E SI unit	ISO 14644-1		
Grade 1	M1.5	ISO class 3		
Grade 2	M2.5	ISO class 4		
Grade 3	M3.5	ISO class 5		
Grade 4	M4.5	ISO class 6		
_	M5.5	ISO class 7		
_	M6.5	ISO class 8		

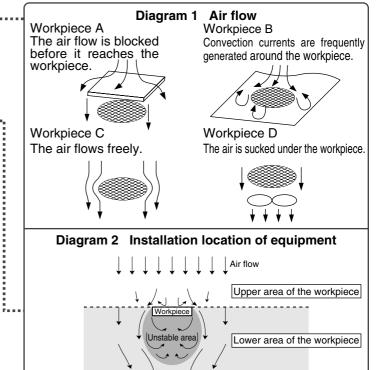
Selection procedure

(1) Required clean room cleanliness? C

Class M2.5 or Class M3.5 or Class M4.5?

(2) Air flow to the workpiece (Refer to Diagram 1.)

Ţ


(3) Where is the pneumatic equipment located? (Refer to Diagram 2.)

ļ

(4) Determine the particle concentration grade no. around the workpiece based on above (1) to (3). (Refer to Table 1.)

Ţ

(5) Select the equipment to be used. (Refer to Front matter 13 to 22.)

Table 1 Particle concentration grade around the workpiece

(2) Workpie	ice		A.B		С			D		
(3) Position of the equipment		Upper area of	Lower area of	the workpiece	Upper area of	Lower area of		Upper area of	Lower area of	the workpiece
		the workpiece	vorkpiece Unstable area Stable area the workpiece Unstable area		Stable area	the workpiece	Unstable area	Stable area		
	Class M2.5				Grade 1		Grade 2	Grade 1	Grade 2	
(1) Cleanliness	Class M3.5					Grade 2	Grade 3			Grade 3
	Class M4.5	Grade 1	Grade 2	Grade 3	Grade 2	Grade 3	Grade 4	Grade 2	Grade 3	Grade 4

:Class M2.5 and M3.5 levels of cleanliness cannot be achieved in area due to dust accumulation or flotation.

Particle Generation Grade

Cylinder

Description			Model	Particle generation grade by series						
	Descri	ption	Model	Standard	10-	11-	12-	13-	21-	22-
		Standard	10-/11-CJ2 21-/22-CJ2		2					
A	Air Cylinder	Double rod	10-/11-CJ2W	3		1			2	1
		Direct mount type	10-/11-CJ2RA							
		Standard	10-/11-CM2 21-/22-CM2		2	1			3	
	Air Cylinder	Double rod	10-/11-CM2W	3						1
	All Cyllidei	Direct mount type	10-/11-CM2R	3		•				
		End lock	10-/11-CBM2							
		Standard	10-/11-CG1							
5	Air Cylinder	Double rod	10-/11- 21-/22- CG1W	3	2	1			3	1
a s		Direct mount type	10-/11-CG1R							
	Air Cylinder Standard		10-/11- 21-/22- CA2	3	2	1			3	1
	Mini-free Mount Cylinder		1º:CUJ	3	2	1				
45 00	Free Mount Cylinder		10-/11- 21-/22-CDU	3	2	1			3	1
(b)	, 6		^{10-/11} -CQS	3	2	1			2	1
Compact Cylinder		ider	^{10-/11} -CQ2	3	2	1			2	1
	Sine Cylinder		¹⁰⁻ REC	3	2	1				
4.	Dual Bad Cali	ndor	11-/12- 21-/22-CXSJ	3, 4 Note)		1	2		3	1
	Duai Rou Cylli	ual Rod Cylinder		3, 4 Note)	2	1	2		3	1

Note) Grade is different depending on the type of the ball bearing.

CXSJ

 Model
 Bearing type
 Standard

 CXSJL
 Ball bushing bearing
 3

 CXSJM
 Slide bearing
 4

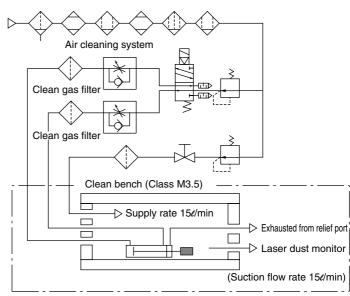
CXS

Model	odel Bearing type	
CXSL	Ball bushing bearing	3
CXSM	Slide bearing	4

Values in show grades.

No grade applies to the blanks.

Particle Generation Measuring Method


The particle generation data for SMC CLEAN SERIES are measured in the following test method.

Test method (Example)

Place the specimen in the acrylic resin chamber and operate it while supplying the same flow rate of clean air as the suction flow rate of the measuring instrument (15t/min). Measure the changes of the particle concentration over time until the number of cycles reaches the specified point. The chamber is placed in a Class M3.5 clean bench.

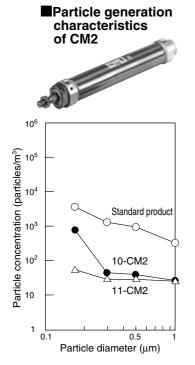
Measuring conditions

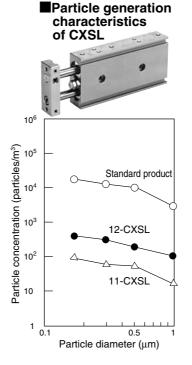
Chamber	Internal volume	15ℓ		
Chamber	Supply air quality	Same quality as the supply air for driving		
	Description	Laser dust monitor (Automatic particle counter by light-scattering method)		
Managemina	Model no.	TS-1500		
Measuring instrument	Minimum measurable particle diameter	0.17μm		
instrument	Suction flow rate	15ℓ/min		
	Manufacturer	Hitachi Electronics Engineering Co. Ltd.		
0 - 44:	Sampling time	5min		
Setting conditions	Interval time	55min		
	Sampling air flow	75ℓ		

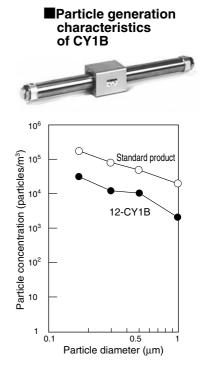
Particle generation measuring circuit

Evaluation method

To obtain the measured values of particle concentration, the accumulated value Note 1) of particles captured every 5 minutes, by the laser dust monitor, is converted into the particle concentration in every 1m³.

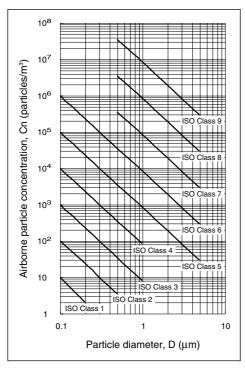

When determining particle generation grades, the 95% upper confidence limit of the average particle concentration (average value), when each specimen is operated at a specified number of cycles Note 2) is considered.


The plots in the graphs indicate the 95% upper confidence limit of the average particle concentration of particles with a diameter within the horizontal axis range.


Note 1) Sampling air flow rate: Number of particles contained in 75¢ of air

Note 2) Actuator: 1 million cycles

Solenoid valve: 2 million cycles

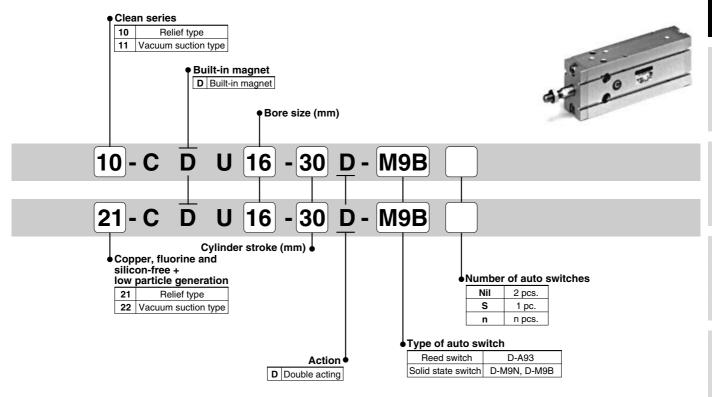


Comparison of Cleanliness Standards

Standard	Fed.Sto	d.209E	ISO 14644-1		
	British unit: Class 1 to 100.00	00	ISO Cass 1 to 9		
	SI unit: Class M1 to M7		Intermediate classes available		
	U descriptor: Particles diame	ter smaller than 0.1 μm	U descriptor: Particles smaller than 0.1 μm		
	-		M descriptor: Particles larger than 5.0 μm		
u	(British unit) (SI unit)				
atic			ISO Class 1		
Cleanliness indication			ISO Class 2		
classes 🥦	1	M1.5	ISO Class 3		
classes ss	10	M2.5	ISO Class 4		
n	100	M3.5	ISO Class 5		
Ē	1000	M4.5	ISO Class 6		
ods	10000	M5.5	ISO Class 7		
Corresponding	100000	M6.5	ISO Class 8		
ပိ			ISO Class 9		
Cleanliness class	The number of particles diameter larger than 0.5 μm in an		The number of particles larger than 0.1 μ m in an air volume		
indication	air volume of 1m³ is expressed in 10M or coefficient Nc.		of 1m³ is expressed in 10 ^N .		
	Cleanliness class: Nc or M		ISO Class N: Occupancy state: Considered particle size		
Calculation of the maximum permitted concentration of	British unit: Number of particl		$Cn = 10^{N} \times (0.1/D)^{2.08}$		
particulate cleanliness classes	SI unit: Number of particles/n				
Evaluation method	① Number of sampling locati		① Number of sampling locations: 2 to 9		
using a simple		d the mean of the averages	95% UCL of the mean and the mean of the averages		
sampling	② Number of sampling locati	ions: 10 or more	② Number of sampling locations: 1, or 10 or more		
	The mean		The mean		
	Non-unidirectional airflow:	at least two locations	Derive it from the area of the cleanroom or clean air controlled		
Number of sampling	$N_L = A \times 64/(10M)^{0.5}$		space.		
locations	② Unidirectional airflow: at le		The number of sampling locations N _L = (A) ^{0.5}		
		√2.32 and N _L =A x 64/(10M) ^{0.5}	At least one location		
Min. sampling air	2 litters or a sufficient volume		The second secon		
flow volume	particles could be counted if the	ne particle concentration were	could be counted if the particle concentration were at the class limit		
	at the class limit.		Min. sampling time: 1 minute		
Number of samplings	Total number of samplings in	each clean zone: 5 times or			
	more		of three single sample volumes at that location.		
	5.0 μm and larger: Constant	-	Suction in the same direction as the airflow		
Sampling method		ection of the air flow	If the direction of the airflow is not predictable, the inlet of		
	0.5 to 5 μm: Correction possible wher	n it is sucked at a nonconstant velocity	the sampling probe shall be directed vertically upward.		

Cleanliness class		Maximum concentration limit (particles/m³)							
		Considered particle diameter (μm)							
(N)		0.1	1	5					
	1	10	2						
	2	100	24	10	4				
	3	1000	237	102	35	8			
100	4	10000	2370	1020	352	83			
ISO Class	5	100000	23700	10200	3520	832	29		
Ciass	6	1000000	237000	102000	35200	8320	293		
	7				352000	83200	2930		
	8				3520000	832000	29300		
	9				35200000	8320000	293000		

Note) Concentration data with no more than three significant figures be used in determining the classification level.


 $Cn = 10^{N} \times (0.1/D)^{2.08}$

- **Cn**: The maximum permitted concentration of airborne particles that are equal to or larger than the considered particle size (D). Cn is rounded down to the nearest whole number, using no more than three significant figures.
- N: Class no.(1 to 9), intermediate class (1.1 to 8.9)
- ${f D}$: Measured particle diameter (μm)
- **0.1**:Constant number (μm)

Series 10-/11-CDU Free mount cylinder / ø6, ø10, ø16, ø20, ø25

How to Order

Model

	L -	Cushion	Port size	Lubrication	Action	Standard stroke	Auto switch mounting	Cus	hion
	Model	Bore size (mm)	FOIL SIZE	Lubrication	ACTION	(mm)	Auto Switch mounting	Rubber	Air
_	10-/21-CDU6	6							
уре	10-/21-CDU10	10			I I louble acting	5, 10, 15, 20, 25, 30			
	10-/21-CDU16	16							
	10-/21-CDU20	20	M5 x 0.8	Non-lube		5, 10, 15, 20, 25, 30, 40, 50			
	10-/21-CDU25	25				5, 10, 15, 20, 25, 30, 40, 50		0	
suction e	11-/22-CDU6	6	IVIS X U.O					0	_
uct	11-/22-CDU10	10				5, 10, 15, 20, 25, 30			
ım sı type	11-/22-CDU16	16							
Vacuum	11-/22-CDU20	20				E 10 1E 00 0E 00 40 E0			
Va	11-/22-CDU25	25				5, 10, 15, 20, 25, 30, 40, 50			

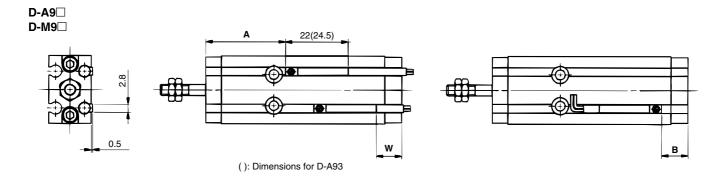
Specifications

Bore size (mm)		10/10	00/05							
Item	6	10/16	20/25							
Proof pressure		1.05MPa								
Max. operating pressure		0.7MPa								
Min. operating pressure	0.12MPa	0.06MPa	0.05MPa							
Ambient and fluid temperature	Without auto switch : -10°C to 70°C With auto switch : -10°C to 60°C (With no condensation)									
Piston speed		50 to 400mm/s								
Stroke length tolerance	+1.0 0									
Grease		11-: Fluorine grea Lithium soap base								
Particle generation grade	10-: (Grade 2, 21-: Grad	de 3							
(Refer to front matter pages 13 to 22 for details.)		11-/22-: Grade 1								

Suction flow rate of vacuum suction type (Reference values)

Size	Suction flow rate /min (ANR)
6	6
10	10
16/20/25	12

Free mount cylinder 10-CDU/21-CDU


Auto switch specifications (Refer to Best Pneumatics catalog for detailed specifications and auto switches not in the following table.)

Switch	type	Auto switch part no.	Load voltage	Load current range	Indicator light	Application
Reed s	witch	D-A93	24 VDC	5 to 40mA (24 VDC)	0	Relay, PLC
Solid state	2-wire type	D-M9B	28 VDC or less	40mA or less	0	IC circuit, Relay, PLC
switch	3-wire type	D-M9N	24 VDC (10 to 28 VDC)	5 to 40mA	0	24 VDC Relay, PLC

Refer to applicable auto switch list — Page 182.

PLC: Programmable Logic Controller

Auto switches / Proper mounting position at stroke end detection

Bore size		D-A9□			D-M9□	
(mm)	Α	В	W	Α	В	W
6	29.5	5.5	-3.5(-1)	33.5	9.5	0.5
10	29.5	9.5	-7.5(-5)	33.5	13.5	-3.5
16	36	11.5	-9.5(-7)	40	15.5	-5.5
20	41	15	-13(-10.5)	45	19	-9
25	40.5	16.5	-14.5(-12)	45.5	20.5	-10.5

Note) The above mentioned values are indicated as a guide for auto switch mounting position for stroke end detection. When actually mounting an auto switch, adjust the position after confirming the operating state of the auto switch.

Note 2) The negative values in the table indicate that the auto switch is mounted inside the cylinder body in case of W and outside in case of B.

Note 3) In case of 5mm stroke (with 1 pc.) or 10mm stroke (2 pcs.), the switch(es) may not go off or more than one switch may turn on simultaneously. Set them at 1 to 4mm out of the values in the above table.

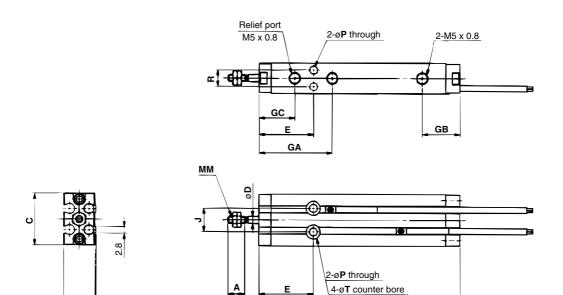
Note 4) (): Dimensions for D-A93.

Mounting

⚠ Caution

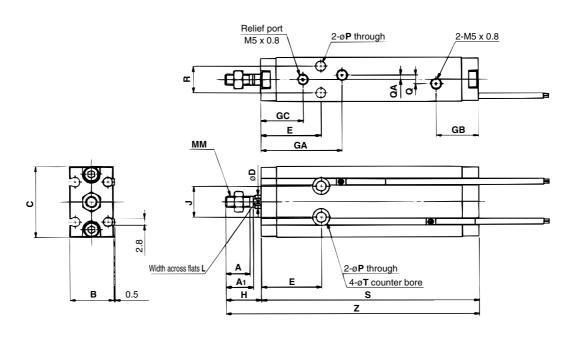
 Observe the proper tightening torque in the right table in mounting.

Appropriate tightening torque


Bore size (mm)	Hexagon socket head cap bolt size(mm)	Appropriate tightening torque N·m
ø6, ø10	M3	1.08 ±10%
ø16	M4	2.45 ±10%
ø20, ø25	M5	5.10 ±10%

0.5

В


ø6/ø10

(mm) s Z В С D Ε GA GB GC Н MM Ρ R Bore size Α J T 5 10 15 20 25 30 15 20 5 10 25 30 13 22 3 23 31 16 15 13 10 M3 x 0.5 3.2 7 6 depth 4.8 60 65 70 75 80 85 83 88 93 98 6 73 78 10 15 24 24 33.5 16 15.5 16 11 M4 x 0.7 3.2 9 6 depth 5 64 69 74 79 84 89 80 85 90 95 100 105 10

Z

ø16 to ø25

																																	(11	1111)
Bore size			_	_	_	_	_ ^	С В	~~					_	_	QA	_	_		S					2	Z								
Bore size	А	A 1	В	C	ט	=	GA	GB	GC	п	J	L	MM	Ρ	Q	QA	ĸ		5	10	15	20	25	30	40	50	5	10	15	20	25	30	40	50
16	11	12.5	20	32	6	27	36.5	19	19	16	14	5	M5 x 0.8	4.5	4	2	12	7.6 depth 6.5	72.5	77.5	82.5	87.5	92.5	97.5	_	_	88.5	93.5	98.5	103.5	108.5	113.5	_	_
20	12	14	26	40	8	30	40	21.5	22	19	16	6	M6 x 1.0	5.5	9	4.5	16	9.5 depth 8	81	86	91	96	101	106	116	126	100	105	110	115	120	125	135	145
25	15.5	18	32	50	10	29	40.5	22	22	23	20	8	M8 x 1.25	5.5	9	4.5	20	9.5 depth 9	83	88	93	98	103	108	118	128	106	111	116	121	126	131	141	151

(mm)

Actuator / Common Precautions 1

Be sure to read before handling. Refer to the main text for precautions for each series.

Precaution on designing

⚠ Warning

 There is a possibility of dangerous sudden action by air cylinders if sliding parts of machinery are twisted due to external forces etc.

In such cases, personal injury by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be adjusted to operate smoothly and designed to avoid such dangers.

A protective cover is recommended to minimize the risk of personal injury.

If a driven object and moving parts of a cylinder are in close proximity, personal injury may occur. Design the structure to avoid contact with the human body.

3. Securely tighten all stationary parts and connected parts so that they will not become loose.

Particularly when a cylinder operates at a high frequency or is installed in a place where there is a lot of vibration, ensure that all parts remain secure.

4. A deceleration circuit may be required.

When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning to relieve the impact.

In this case, the rigidity of the machinery should also be examined.

Consider a possible drop in circuit pressure due to a power outage, etc.

When a cylinder is used in a clamping mechanism, there is a danger of workpiece dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and personal injury. Suspension mechanisms and lifting devices also require consideration for drop prevention.

6. Consider a possible loss of power source.

Measures should be taken to avoid personal injury and equipment damage in the event that there is a loss of power to equipment controlled by pneumatics, electricity, or hydraulics.

7. Design circuitry to prevent the sudden lurching of driven objects.

When a cylinder is driven by an exhaust center type directional control valve or when it is started up after residual pressure is exhausted from the circuit, etc., the piston and its driven object will lurch when the cylinder is operated at high speed if pressure is applied to one side of the cylinder, due to the absence of air pressure inside the cylinder. Therefore, equipment should be selected and circuits should be designed to prevent this sudden lurching, because there is a danger of personal injury and/or damage to equipment when this occurs.

8. Consider emergency stops.

Design the machinery so that personal injury and/or damage to machinery and equipment will not occur when the machinery is stopped by a safety device under abnormal conditions, such as a power outage or a manual emergency stop.

Consider the action when operation is restarted after an emergency stop or abnormal stop.

Design the machinery so that personal injury or equipment damage will not occur upon restart of operation.

When the cylinder has to be reset at the start position, install safety manual control equipment.

Selection

A Warning

1. Confirm the specifications.

The products featured in this catalog are designed for use in industrial compressed air systems. If the products are used in conditions where pressure and/or temperature are outside the range of specifications, damage and/or malfunctions may occur. Do not use in these conditions. (Refer to the specifications).

Please consult with SMC if you use a fluid other than compressed air.

2. Intermediate Stops

With a 3-position closed center type valve, it is difficult to accurately and precisely stop a piston at the required position in the same way as can be done with hydraulic pressure due to the compressibility of air.

Furthermore, since valves and cylinders, etc. are not guaranteed for zero air leakage, it may not be possible to hold a stopped position for an extended period of time. Please contact with SMC when it is necessary to hold a stopped position for an extended period of time.

1. Operate within the limits of the maximum feasible stroke.

Operation that exceeds the maximum stroke may damage a piston rod. Refer to the air cylinder model selection procedures for the maximum feasible strokes.

2. Operate a cylinder within a range such that collision damage will not occur to a piston at the stroke end.

Operate a cylinder within a range so that a piston having inertial force will not be damaged when it collides against the cover at the stroke end. Refer to the air cylinder model selection procedures for the maximum feasible strokes.

- Use a speed controller to adjust the cylinder speed, gradually increasing from a low speed to the desired speed setting.
- 4. Provide intermediate supports for long stroke cylinders.

An intermediate support should be provided in order to prevent damage to a long stroke cylinder, due to problems such as sagging of the rod, deflection of the cylinder tube, vibration and external load.

Actuator / Common Precautions 2

Be sure to read before handling. Refer to the main text for precautions for each series.

Mounting

⚠ Caution

 Be certain to match the rod shaft center with the load and direction of movement when connecting.

When not properly matched, problems may arise with the rod and tube, and damage may be caused due to friction on areas such as the inner tube surface, bushings, rod surface, and seals.

- When using an external guide, connect the rod end and the load in such a way that there is no interference at any point within the stroke.
- Do not scratch or gouge the sliding portion of the cylinder tube or the piston rod by striking it with an object, or squeezing it.

The tube bore is manufactured under precise tolerances. Thus, even a slight deformation could lead to a malfunction.

Moreover, scratches or gouges, etc. in the piston rod may lead to damaged seals and cause air leakage.

Do not use until you verify that the equipment can operate properly.

After mounting, repairs, or modification, etc., connect the air supply and electric power, and then confirm proper mounting by means of appropriate function and leak tests.

5. Instruction manual

Install the products and operate them only after reading the instruction manual carefully and understanding its contents.

Also keep the manual where it can be referred to as necessary.

Cushion

⚠ Caution

1. Readjust with a cushion needle.

Cushions are adjusted at the time of shipment; however, the cushion needle on the cover should be readjusted, when the product is put into service based on factors such as the size of the load and the operating speed. When the cushion needle is turned clockwise, the restriction becomes smaller and the cushion's effectiveness is increased. Tighten the lock nut securely after adjustment is performed.

2. Do not operate the actuator with the cushion needle fully closed.

This could damage the seals.

Air Supply

A Warning

1. Use clean air.

Do not use compressed air which contains chemicals, synthetic oil containing organic solvents, salts or corrosive gases, etc. as this may cause damage or malfunction.

⚠ Caution

1. Install air filters.

Install air filters close to valves at their upstream side. A filtration degree of $5\mu m$ or less should be selected.

2. Install an aftercooler, air dryer, or water separator (Drain Catch).

Compressed air that includes excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an air dryer, aftercooler or water separator (drain catch), etc.

3. Use the product within the specified range of fluid and ambient temperature.

Take measures to prevent freezing at temperature below 5°C, since moisture in circuits may freeze and cause damage to seals and lead to malfunctions.

Actuator / Common Precautions 3

Be sure to read before handling. Refer to the main text for precautions for each series.

Operating Environment

⚠ Warning

1. Do not use in atmospheres or locations where corrosion hazards exist.

Refer to the construction drawings regarding cylinder materials.

In locations where ultrapure water or cleaning solvent, etc. splashes on the equipment, take suitable measures to protect the rod.

Maintenance

A Warning

1. Perform maintenance procedures as shown in the instruction manual.

Improper handling may result in malfunction and damage of machinery or equipment.

2. Removal of equipment, and supply / exhaust of compressed air

Before any machinery or equipment is removed, first ensure that the appropriate measures are in place to prevent the fall or erratic movement of driven objects and equipment, then cut off the electric power and release the compressed air in the system. When machinery is restarted, proceed with caution after confirming that appropriate measures are in place to prevent

1. Drain flushing

Remove drainage from air filters regularly.

cylinders from sudden movement.

Auto switch / Common Precautions 1

Be sure to read before handling. Refer to the main text for precautions for each series.

Design/Selection

$oldsymbol{\Lambda}$ Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the specifications of current voltage, temperature or

2. Use caution when multiple cylinders are used in close proximity to each other.

When two or more auto switch cylinders are lined up in close proximity to each other, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40mm. (When the allowable interval is specified for each cylinder series, use the indicated value.)

3. Use caution to the ON time of a switch at the intermediate position of stroke.

When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too fast, the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is :

$$V (mm/s) = \frac{Auto switch operation range (mm)}{Load operating time (ms)} \times 1000$$

In cases of high piston speed, the use of an auto switch (D-F5NT, F7NT, G5NT and M5\(\subseteq\text{T}\)) with a built-in OFF delay timer (approx. 200ms) makes it possible to extend the load operating time.

4. Wiring should be kept as short as possible.

<Reed switch>

As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time).

- 1) For an auto switch without a contact protection circuit, use a contact protection box when the wire length is 5m or longer.
- 2) Even if an auto switch has a built-in contact protection circuit, when the wiring is more than 30m long, it is not able to adequately absorb the rush current and its life may be reduced. It is again necessary to connect a contact protection box in order to extend its life. Please contact SMC in this case.

<Solid state switch>

3) Although wire length should not affect switch function, use a wire 100m or shorter.

5. Use caution to internal voltage drop of a switch.

<Reed switch>

- 1. Switches with an indicator light (except D-A56/A76H/ A96/A96 V/C76/F76A/Z76)
- If auto switches are connected in series as shown below, please note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)
- [The voltage drop will be "n" times larger when "n" auto switches are connected.]

The load may be ineffective even though the auto switch function is normal.

· Similarly, when operating below a specified voltage, it is possible that the load may be ineffective even though the auto switch function is normal. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Power voltage - Internal voltage drop of switch > Minimum operating voltage of load

- 2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (D-A6 , A80, A80H, A90, A90V, C80, R80, 90, E80A, Z80).
- <Solid state switch>
- 3) Generally, the internal voltage drop will be greater with a 2wire solid state auto switch than with a reed switch. Take the same precautions as in 1).

Also please note that a 12VDC relay is not applicable.

6. Use caution to the leakage current.

<Solid state switch>

With a 2-wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the

Current to operate load (OFF condition) > Leakage current If the condition given in the above formula is not met, it will not reset correctly (stays ON). Use a 3-wire switch if this specification cannot be satisfied.

Moreover, leakage current flow to the load will be "n" times larger when "n" auto switches are connected in parallel.

7. Do not use a load that generates surge voltage.

When driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or a contact protection box.

<Solid state switch>

Although a zener diode for surge protection is connected to the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.

8. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch.

Also perform periodic maintenance inspections and confirm proper operation.

9. Ensure sufficient space for maintenance activities.

When designing an application, be sure to allow sufficient space for maintenance and inspection.

Auto switch / Common Precautions 2

Be sure to read before handling. Refer to the main text for precautions for each series.

Mounting/Adjustment

⚠ Warning

1. Do not drop or bump.

Do not drop, bump, or apply excessive impacts (300m/s² or more for reed switches and 1000m/s² or more for solid state switches) while handling. Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.

2. Do not carry a cylinder by the auto switch lead wires.

Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.

3. Mount switches using the proper tightening torque.

When a switch is tightened beyond the range of tightening torque, the mounting screws or switch may be damaged.

On the other hand, tightening below the range of tightening torque may allow the switch to slip out of position.

4. Mount a switch at the center of the operating range.

Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON). (The mounting positions shown in the catalog indicate the optimum position at the stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), the operation will be unstable.

<D-M9□>

If this auto switch replaces the conventional model, it may not function depending on the application (shown below) because its operation range is shorter.

- Applications where at the end, the stopping position shifting range is larger than the operation range
- e.g. Workpiece pushing, pressing into a hole, or clamping
- Applications where an auto switch is used to detect intermediate stopping positions (Detecting time is shortened).

As indicated above, mount a switch at the center of the operating range.

Wiring

⚠ Warning

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from repeatedly applying bending stress or stretching force to lead wires.

2. Be sure to connect the load before power is applied.

<2-wire type>

If the power is turned on when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

4. Do not wire with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits, including auto switches, may malfunction due to

Wiring

A Warning

5. Do not allow short circuiting of loads.

<Reed switch>

If the power is turned on with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

<Solid state switch>

Models M-F9□(V), F9□W(V), J51, G5NB and all models of PNP output switches do not have built-in short circuit prevention circuits. If loads are short circuited, the switches will be instantly damaged.

Use caution to avoid reverse wiring with the brown power supply line and the black output line on 3 -wire type switches.

6. Avoid incorrect wiring.

<Reed switch>

A 24VDC switch with indicator light has polarity. The brown lead wire or terminal No.1 is (+), and the blue lead wire or terminal No.2 is (-).

[In the case of model D-97, the side without indicator is (+) and the blue line side is (-).]

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.

Also please note that a current greater than the maximum specified one will damage a light emitting diode and make it inoperable.

Applicable models

D-A73, A73H, A73C, C73, C73C, E73A, Z73, R73

D-97, 93A, A93, A93V

D-A33, A34, A33A, A34A, A44, A44A

D-A53, A54, B53, B54

However, when using a 2 color indication auto switch (D-A79W, A59W, B59W), be aware that the switch will constantly remain ON if the connections are reversed.

<Solid state switch>

- If connections are reversed on a 2-wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
- 2) If connections are reversed (power supply line (+) and power supply line (-) on a 3-wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue wire and the power supply line (-) is connected to the black wire, the switch will be damaged.

<D-M9□>

D-M9 \square does not have built-in short-circuit prevention circuits. Reverse connection of power supply line (+) and (–) may damage the switch.

Auto switch / Common Precautions 3

Be sure to read before handling. Refer to the main text for precautions for each series.

Environment

⚠ Warning

1. Never use in the presence of explosive gases.

Our auto switches are not explosion proof. Never use them in the presence of explosive gas, as this may cause a serious explosion.

2. Do not use in an area where a magnetic field is generated.

Auto switches will malfunction or magnets inside cylinders will become demagnetized. (Please consult with SMC regarding the availability of a magnetic field resistant auto switch.)

3. Do not use in environments where the auto switches will be constantly exposed to water.

Although switches except D-A3□/A44□/G39□/K39□ satisfy the IEC standard IP67 structure (JIS C 0920: anti-immersion structure), do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.

4. Do not use in environments with oil or chemicals.

Please consult with SMC if auto switches will be used in an environment with coolants, cleaning solvents, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, a malfunction due to swelling of the potting resin, or hardening of the lead wires.

5. Do not use in environments with temperature cycles.

Please consult with SMC if switches are to be used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.

Do not use in environments where there is excessive impact shock.

<Reed switch>

When excessive impact (300 m/s² or more) is applied to a reed switch during operation, the contact point may malfunction and generate or cut off a signal momentarily (1ms or less). Please consult with SMC regarding the need to use a solid state switch depending on the environment.

7. Do not use in locations where surges are generated.

<Solid state switch>

When there are units (solenoid type lifters, high frequency induction furnaces, motors, etc.) which generate a large amount of surge in the area around cylinders with solid state auto switches, this may cause deterioration or damage to the switches. Avoid sources of surge generation and crossed lines.

8. Avoid close contact with magnetic substances.

When a magnetic substance (substance attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause the auto switches to malfunction due to a loss of the magnetic force inside the cylinder.

Maintenance

Marning

- Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
 - Securely tighten switch mounting screws.
 If screws become loose or the mounting position is dislocated, retighten screws securely after readjusting the mounting position
- Confirm that there is no damage to lead wires.
 To prevent faulty insulation, replace switches or repair lead wires if damage is discovered.
- 3) Confirm that the green light on the 2-color indicator type switch lights up.

Confirm that the green LED is ON when stopped at the set position. If the red LED is ON when stopped at the set position, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

Other

.⚠Warning

2-wire system

Output (+)

- Please consult with SMC concerning water resistance, elasticity of lead wires, etc.
- *Lead wire color changes

Old

Red

Lead wire colors of SMC auto switches have been changed in order to meet NECA (Nippon Electric Control Equipment Industries Association) Standard 0402 for production beginning September, 1996 and thereafter. Special care should be taken regarding wire polarity during the time that both old and new colors exist.

New

Brown

3-wire system

Power supply +

Power supply GND

Output (–) Bia	ск	Blue
Solid state with	diagnos	tic output
	Old	New
Power supply +	Red	Brown
Power supply GND	Black	Blue
Output	White	Black

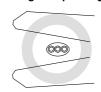
Diagnostic output | Yellow | Orange

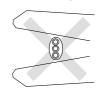
Output	White	Black
Solid state with latch	type diagn	ostic output
	Old	New
Power supply +	Red	Brown
Power supply GND	Black	Blue
Output	White	Black
Latch type diagnostic output	Yellow	Orange

Old

Red

Black


New


Brown

Blue

⚠ Caution

1. When stripping the cable clad, take care with the orientation of the cable being stripped. The insulator may accidentally be torn or damaged depending on the orientation.(D-M9 only)

Recommended tools are shown below.

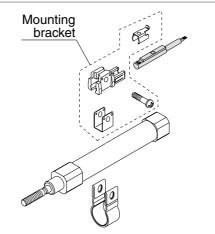
Manufacturer	Model name	Model no.
VESSEL	Wire stripper	No 3000G
TOKYO IDEAL	Strip master	45-089

^{*} Stripper for round cable (ø2.0) can be used for a 2-wire type cable.

Cylinder Applicable auto switch list

	Cylinder series	9	Z CDNZ	CDM2	CDBM2	1900	500	CDA2	cno	CDU	CDQS	CDQ2	REC	CXS	cxs	MGP	MGF	MXP	MXQ	MXS	СУР	CDQSX	CDQ2X	CDM2X
	Bore size		ø10/ø16	ø20 to ø40	ø20 to ø40	ø20 to ø63	ø80/ø100	ø40 to ø63	ø6 to ø10	ø6 to ø25	ø12 to ø25	ø32 to ø100	ø20 to ø40	ø6·ø10	ø6 to ø32	ø12 to ø63	ø40/ø63/ø100	ø6 to ø16	ø6 to ø25	ø6 to ø25	ø15/ø32	ø12 to ø25	ø32 to ø63	ø20 to ø40
Reed switch	D-C7/C8 D-C73C/C80C D-B5/B6 D-B59W D-A3/A4 D-A3□A/A44A D-A3□C/A44C D-A7□H/A80H							535335 E E E E																
witch	D-A73C/A80C D-A79W D-A5/A6 D-A59W D-A9	*	*	*	*	*	*	*					*			*								*
	D-Z7/Z8 D-H7 D-H7C D-H7C D-H7BAL D-H7□F D-H7□W D-G5/K5 D-G5BAL D-G59F																							
	D-G5NTL D-G5□W/K59W D-G39/K39 D-G39A/K39A D-F7/J7 D-J79C D-F7□F D-F7BAL																							
Solid state switch	D-F7BAVL D-F7□V D-F7NTL D-F7□W (V) D-F5/J5 D-F5BAL D-F5□W/J59W D-F5□F																							
	D-F5NTL D-G39C/K39C D-M9 D-M9□V D-F9□W D-F9□WV	*	*	*	*	*	*	* * *					*			* * *								*
	D-F9BAL D-Y59A/Y7P/Y59B D-Y69A/Y7PV/Y69B D-Y7□W D-Y7□WV D-Y7BAL D-P5□WL							*								*								
	D-F9G/H D-Y7G/H D-G5NBL D-F8	*	*	*	*	*	*	*					*			*								*

Please refer to the next page for applicable auto switches and cylinders in the fields marked with asterisks (*).

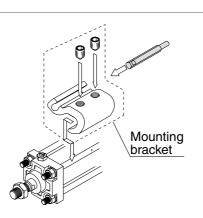

Compact auto switch mounting bracket

Mounting brackets used for installing the compact auto switches D-A9/M9/F9 onto band mounting / tie-rod mounting / groove mounting style cylinders are available.

Band mounting

Applicable cylinder 10-/11-/21-/22-CDJ2 Series 10-/11-/21-/22-CDM2 Series 10-/11-REC Series 10-/11-CDM2X Series

Applicable auto switch

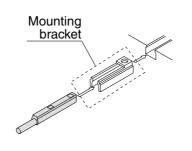

Solid state switch
D-M9
D-F9□W (2-color indication)
Reed switch
D-A9

Perpendicular entry is unavailable.

Tie-rod mounting

Applicable cylinder
10-/11-/21-/22-CDA2 Series

Applicable auto switch


Solid state switch
D-M9/M9□V
D-F9□W/F9□WV (2-color indication)
D-F9BAL (water resistant type)

Reed switch **D-A9/D-A9**□**V**

Groove mounting

Applicable cylinder
12-/13-/21-/22-MGP Series

Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC), Japan Industrial Standards (JIS)*1) and other safety regulations*2).

* 1) ISO 4414: Pneumatic fluid power - General rules relating to systems.

ISO 4413: Hydraulic fluid power – General rules relating to systems.

IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)

ISO 10218-1992: Manipulating industrial robots -Safety.

JIS B 8370: General rules for pneumatic equipment.

JIS B 8361: General rules for hydraulic equipment.

JIS B 9960-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)

JIS B 8433-1993: Manipulating industrial robots - Safety.

etc.

* 2) Labor Safety and Sanitation Law, etc.

Caution: Operator error could result in injury or equipment damage.

Warning: Operator error could result in serious injury or loss of life.

Danger: In extreme conditions, there is a possibility of serious injury or loss of life.

⚠ Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.

Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

- 3. Do not service or attempt to remove product and machinery/equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - ${\it 3. Before \ machinery/equipment is \ restarted, \ take \ measures \ to \ prevent \ unexpected \ operation \ and \ malfunction.}$
- 4. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
 - 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
 - 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

ACaution

The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary. If anything is unclear, contact your nearest sales branch.

Limited Warranty and Disclaimer/Compliance Requirements

The product used is subject to the following "Limited Warranty and Disclaimer" and "Compliance Requirements". Read and accept them before using the product.

Limited Warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered.*3)
 - Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
 - This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
 - * 3) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.

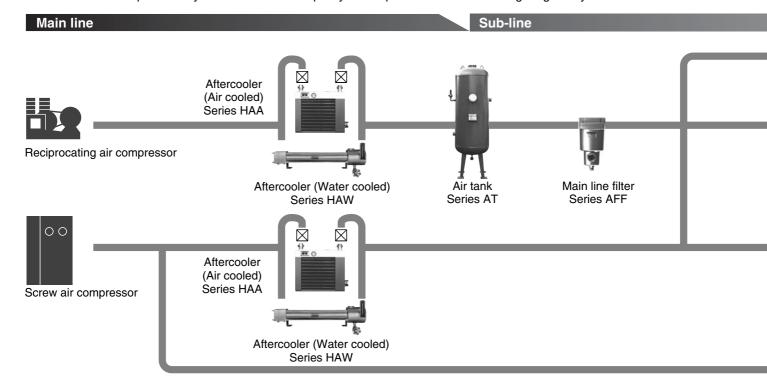
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

When the product is exported, strictly follow the laws required by the Ministry of Economy, Trade and Industry (Foreign Exchange and Foreign Trade Control Law).

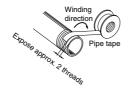
Clean series: Common Precautions 1

Be sure to read before handling.


Refer to the main text for detailed precautions on every series.

Air Supply

System Configuration


Refer to the "Air Preparation System" below for the quality of compressed air before configuring the system.

Piping

- Provide an inclination of 1cm per meter in the direction of the air flow to the main piping.
- 2. If there is a line branching from the main piping, provide an outlet of compressed air on top using a tee so that drainage accumulated in the piping will not flow out.
- Provide a drainage mechanism at every recessed point or dead end to prevent drain accumulation.
- **4.** For future piping extensions, plug the end of the piping with a tee.
- 5. Before piping Before piping, the piping should be thoroughly blown out with air (flushed) or washed to remove chips, cutting oil and other debris from inside the pipe.
- 6. Wrapping of pipe tape When screwing piping or fittings into ports, ensure that chips from the pipe threads or sealing material do not get inside the valve.

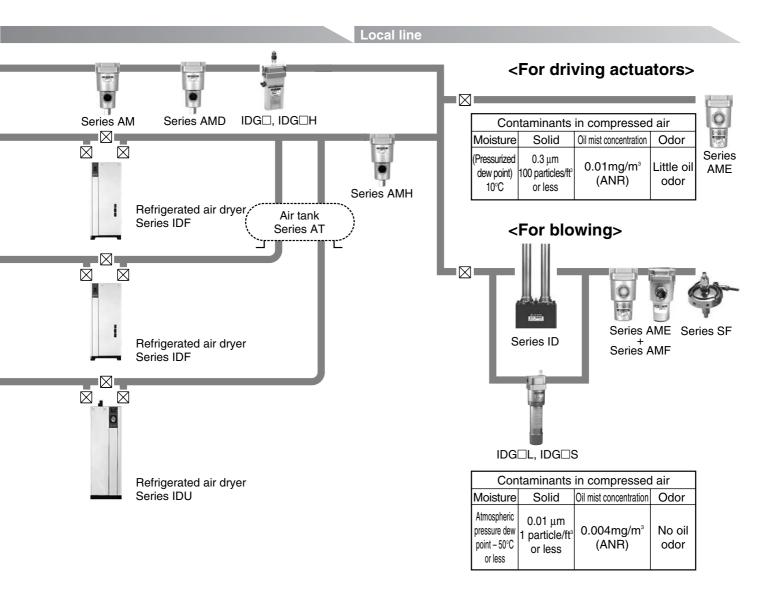
Also, when pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

7. If air with a low dew point (-40°C or less) is required, do not use nylon tube or resin fitting (except for fluorine resin) for the outlet side of the membrane air dryer or heatless air dryer. Nylon tubing could be affected by the ambient air and it thus might not be possible to achieve the prescribed low dew point at the end of the tube. Therefore, for low dew point air, use stainless steel or fluorine tube.

Maintenance

 If the heatless air dryer Series ID is left unused for a long period, the absorbent may be moistened. Prior to use, close the valve on the outlet side of the dryer for regeneration and drying.

Caution on Design


Employ a safe design, so that the following unexpected conditions will not occur.

- 1. Provide a design that prevents high-temperature compressed air from flowing into the outlet side of the cooling equipment.
 - If the flow of the coolant water in a water-cooled aftercooler is stopped or if the fan motor of an air cooled aftercooler is stopped, the high-temperature compressed air will flow to the outlet side of the cooling equipment, causing the equipment on the outlet side (such as the AFF, AM, AD, or IDF series) to be damaged or to malfunction.
- Provide a design in which interruptions in the supply of compressed air are taken into consideration.

Air Supply

There are cases in which compressed air cannot flow due to the freezing of the refrigerated air dryer or a malfunction (heatless dryer) in the switching valve.

⚠ Caution

3. Design a layout in which the leakage of the coolant water and the dripping of condensation are taken into consideration.

A water-cooled aftercooler that uses coolant water could lead to water leakage due to freezing. Depending on the operating conditions, the refrigerated air dryer and its downstream pipes could create a dripping of water droplets due to condensation formed by supercooling.

4. Provide a design that prevents back pressure and backflow. The generation of back pressure and backflow could lead to equipment damage.

Take appropriate safety measures, including the proper installation methods.

5. Depending on the model and operating conditions, the life span of air cylinders may be shortened when they are used in an environment of super dry air (atmospheric pressure dew point: -50°C) or high-purity nitrogen gas or when such super dry air or high-purity nitrogen gas is used as the fluid.

Please contact with SMC for further details on applicable series, models, operating conditions and life spans.

6. Blowing system

Even a small amount of dust can be a problem for blowing systems.

Install Clean Gas Filter Series SF to the end of the blowing line.

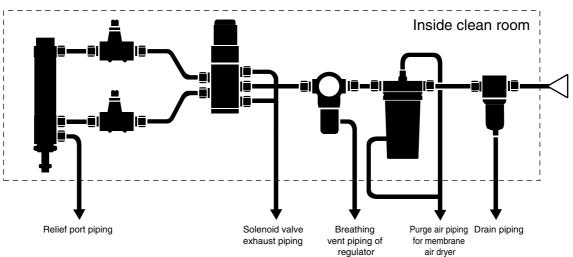
Clean series: Common Precautions 2

Be sure to read before handling.

Refer to the main text for detailed precautions on every series.

Piping: Inside of Clean Room

⚠ Caution


 Do not make the piping for the air cylinder relief port and regulator breathing vent piping common with solenoid valve exhaust piping.

This can cause malfunctions in the air cylinder or regulator pressure change.

- Arrange the piping so that the exhaust air of the solenoid valves is exhausted outside of the clean room.
- 3. Air filter drain piping

Exhaust drainage outside the clean room through piping from the drain guide of the air filter.

- Arrange the membrane dryer air purge piping using a standard size tubing so that air is exhausted outside the clean room.
- 5. Take precautions so that the threaded portion of the piping connection or the tubing connection will not be loosened. Take sufficient precautions against the piping shaking along with the vibration of the equipment.
- 6. Use polyurethane tubing containing no plasticizer.

Handling

⚠ Caution

- The inner bag of a double-packed clean series package should be opened in a clean room or clean environment.
- When standard pneumatic equipment is brought into a clean room, spray high-purity air upon it and remove dust thoroughly by wiping the external surfaces of the cylinder tube, solenoid valves and air line equipment with alcohol.
- To replace parts or disassemble the product in a clean room, first exhaust the compressed air inside the piping to the outside of the clean room before the work.
- 4. Do not use rotation type mounting brackets such as clevises, trunnions, etc.. They will generate a considerable amount of particulate matter due to the sliding friction between the metal parts.

Lubrication / In the Case of Actuator

Marning

Be sure to wash your hands after handling fluororesin grease.

The grease itself is not hazardous but it can produce a hazardous gas at temperatures exceeding 260°C.

⚠ Caution

- Do not use any greases but those specified by SMC.
 Use of greases not specified will cause malfunctions or particle generation.
- 2. Do not lubricate the products since they are of a nonlubricant type.

As the clean series actuators are lubricated at the factory with fluororesin grease, the product specifications may not be satisfied if turbine oil or other such lubricants are applied.

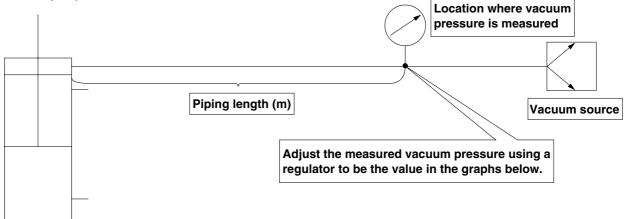
Piston speed

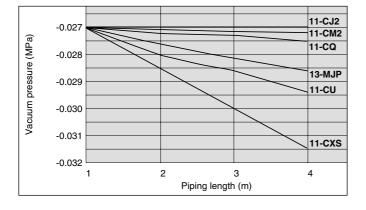
⚠ Caution

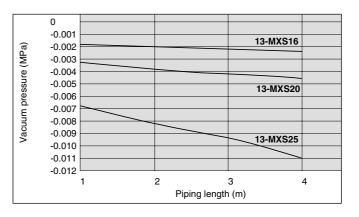
The cylinder speed upper limit that retains the particle generation grade is 400 mm/s.

Clean series: Common Precautions 3

Be sure to read before handling.


Refer to the main text for detailed precautions for every series.


Suction flow rate of vacuum suction types


⚠ Caution

For the vacuum suction types (Series 11-/13-/22-), perform vacuum suction at the vacuum port to retain the particle generation grade.

The optimum suction flow rate varies depending on series and sizes. Refer to "Suction flow rate of vacuum suction type (Reference values)" for each series. (The vacuum pressure will be approximately -27 kPa at around 1 m from the vacuum suction port.) Please consult SMC for further details.

SMC Corporation

Akihabara UDX 15F,

4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN

Phone: 03-5207-8249 FAX: 03-5298-5362

URL http://www.smcworld.com

© 2008 SMC Corporation All Rights Reserved