Electric Grippers

With drop prevention function

(Self-lock mechanism is provided for all series.) Gripping force of the workpieces is maintained when stopped or restarted. The workpieces can be removed with manual override.
Compact body sizes and long stroke variations Gripping force equivalent to the widely used air grippers is available.

Possible to set position, speed and force. (64 points)

Energy-saving product

Power consumption reduced by self-lock mechanism.

With gripping check function

 Identify workpieces with different dimensions/detect mounting and removal of the workpieces.
Z Type (2 fingers)

Compact and light, various gripping forces

F Type (2 fingers)
Can hold various types of workpieces with a long stroke.
\(\left.$$
\begin{array}{l}\text { Series } L \text { LEHF } \\
\hline \text { Size }\end{array}
$$ $$
\begin{array}{c}\text { Stroke/ } \\
\text { both sides } \\
{[\mathrm{mm}]}\end{array}
$$ \quad \begin{array}{c}Gripping force

{[\mathrm{N}]}\end{array}\right]\)| $\mathbf{1 0}$ | $16(32)$ | 3 to 7 |
| :---: | :---: | :---: |
| $\mathbf{2 0}$ | $24(48)$ | 11 to 28 |
| $\mathbf{3 2}$ | $32(64)$ | 48 to 120 |
| $\mathbf{4 0}$ | $40(80)$ | 72 to 180 |

(): Long stroke

ZJ Type (2 fingers)

With dust cover (Equivalent to IP50) 3 types of cover material (Finger portion only)

S Type (3 fingers)

Can hold round workpieces.

	Serie	LEHS		
	Siz	Stroke/	Gripping	orce [N]
,	e	[mm]	Basic	Compact
	10	4	2.2 to 5.5	1.4 to 3.5
10	20	6	9 to 22	7 to 17
1	32	8	36 to 90	-
	40	12	52 to 130	-

Step Motor (Servo/24 VDC)
Controller/Driver
Step data input type Series LECP6

- 64 points positioning
- Input using controller setting kit or teaching box

Electric Gripper 2-Finger Type

Series LEHZ/Size: 10, 16, 20, 25, 32, 40
Series LEHZJ/Size: 10, 16, 20, 25
Series LEHF/Size: 10, 20, 32, 40

-Compact and lightweight Various gripping forces

Weight: 165 g (LEHZ10)

- Sealed-construction dust cover Equivalentio 1 P50)

- Prevents machining chips, dust, etc., from getting inside - Prevents spattering of grease, etc.

-3 types of cover material (Finger portion only)

- Chloroprene rubber (black): Standard
- Fluororubber (black): Option
- Silicone rubber (white): Option

Electric Gripper 3-Finger Type

Series LEHS/Size: 10, 20, 32, 40

Can hold various types of workpieces with a long stroke.

-Can hold round workpieces.

<Mounting Variations>

Series LEHZ/LEHZJ

A When using the thread on the side of the body

Series LEHF

When using the thread on the body

Series LEHS

A When using the thread on the mounting plate

C When using the thread on the back of the body

When using the thread on the back of the body

B When using the thread on the back of the body

Application Examples

Gripping of components that are easily deformed or damaged

Speed and gripping force control and positioning

Step Data Input Type Series LECP6

Simple Setting to Use Straight Away OEasy Mode for Simple Setting

If you want to use it right away, select "Easy Mode."

Step motor

It can be registered by "SET" after entering the values.

Step	Axis 1
Step No.	0
Posn Speed 50.00 mm $200 \mathrm{~mm} / \mathrm{s}$	

Example of checking the operation status

Operation status can be checked.

Teaching box screen

Data can be set with position and speed. (Other conditions are already set.)

Gateway Unit Series LEC-G

Unit linking the LECP6 series and Fieldbus network

- Two methods of operation

Step data input: Operate using preset step data in the controller.
Numerical data input: The actuator operates using values such as position and speed from the PLC.

Features 5
厅SMC

© Normal Mode for Detailed Setting

Select normal mode when detailed setting is required.

Step data can be set in detail.
Signals and terminal status can be monitored.

- Parameters can be set.
-JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Each function (step data setting, test, monitor, etc.) can be selected from the main menu.

The actuator and controller are provided as a set. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Programless Type series LECP1

No programming

Capable of setting up an electric actuator operation without using a PC or teaching box
(1) Setting position number

Setting a registered number for the stop position
Maximum 14 points

2 Setting a stop position
Moving the actuator to a stop position using FORWARD and REVERSE buttons

3) Registration

Step motor (Servo/24 VDC) LECP1
Registering the stop position using SET button

Speed/Acceleration 16-level adjustment

Pulse Input Type series LECPA

A driver that uses pulse signals to allow positioning at any position. The actuator can be controlled from the customers' positioning unit.

Return-to-origin command signal

Enables automatic return-to-origin action.
With force limit function (Pushing force/Gripping force operation available)
Pushing force/Positioning operation possible by switching signals.

Series LECP6/LECP1/LECPA

Function

Item	Step data input type LECP6	Programless type LECP1	Pulse input type LECPA
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Select using controller operation buttons	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Input the numerical value from controller setting software (PC) or teaching box - Input the numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching	- No "position" setting required Position and speed set by pulse signal
Number of step data	64 points	14 points	-
Operation command (I/O signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [IN^{*}] input only	Pulse signal
Completion signal	[INP] output	[OUT** output	[INP] output

Setting Items

TB: Teaching box PC: Controller setting software

	Item	Contents	Easy mode		Normal mode	Step data input type LECP6	Pulse input type LECPA	Programless type LECP1*
			TB	PC	TB/PC			
Step data setting (Excerpt)	Movement MOD	Selection of "absolut position" and "reative position"	\triangle	\bigcirc	\bigcirc	Set at ABS/INC	No setting required	Fixed value (ABS)
	Speed	Transfer speed	-	-	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$		Select from 16-level
	Position	[Position]: Target position [Pushing]: Pushing start position	-	\bigcirc	\bigcirc	Set in units of 0.01 mm		Direct teaching JOG teaching
	Acceleration/Deceleration	Acceleration/deceleration during movement	\bigcirc	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$		Select from 16-level
	Pushing force	Rate of force during pushing operation	\bigcirc	\bigcirc	-	Set in units of 1\%	Set in units of 1\%	Select trom 3 -evel (weak, medium, strong)
	Trigger LV	Target force during pushing operation	\triangle	\bigcirc	-	Set in units of 1\%	Set in units of 1\%	No setting required (same value as pusting force)
	Pushing speed	Speed during pushing operation	\triangle	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required
	Moving force	Force during positioning operation	\triangle	\bigcirc	\bigcirc	Set to 100\%	Setto (Different values for each actuator)\%	
	Area output	Conditions for area output signal to turn ON	\triangle	-	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	In position	[Position]: Width to the target position [Pushing]: How much it moves during pushing	\triangle	\bigcirc	\bigcirc	Set to 0.5 mm or more (Units: 0.01 mm)	Set to (Different values for each actuator) or more (Units: 0.01 mm)	
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	Stroke (-)	- side limit of position	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	ORIG direction	Direction of the return to origin can be set.	\times	\times	\bigcirc	Compatible	Compatible	Compatible
	ORIG speed	Speed during return to origin position	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	
	ORIG ACC	Acceleration during return to origin position	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	俍
Test	JOG		-	\bigcirc	\bigcirc	Continuous operation at the set speed can be tested while the switch is being pressed.	Continuous operation at the set speed can be tested while the switch is being pressed.	Hold down MANUAL button ((®) for uniform sending (speed is specified value)
	MOVE		\times	\bigcirc	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Operation at the set distance and speed from the current position can be tested.	Press MANUAL button (®) (V) once for sizing operation (speed, sizing amount are specitied values)
	Return to ORIG		-	\bigcirc	\bigcirc	Compatible	Compatible	Compatible
	Test drive	Operation of the specified step data	-	-	(Continuous operation)	Compatible	Not compatible	Compatible
	Forced output	ON/OFF of the output terminal can be tested.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	-	\bigcirc	\bigcirc	Compatible	Compatible	
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible	Compatible	
ALM	Status	Alarm currently being generated can be confirmed.	\bigcirc	\bigcirc	-	Compatible	Compatible	Compatible (display alarm group)
	ALM Log record	Alarm generated in the past can be confirmed.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	\times	\times	\bigcirc	Compatible	Compatible	
Other	Language	Can be changed to Japanese or English.	-	\bigcirc	-	Compatible	Compatible	

\triangle : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen) * Programless type LECP1 cannot be used with the teaching box and controller setting kit.

System Construction/General Purpose I/O

The * mark: Can be included in the "How to Order" for the actuator.
-Teaching box Page 63
(With 3 m cable)
Part no.: LEC-T1-3JG \square

Option

-Controller setting kit Page 62

Controller setting kit
(Communication cable, conversion unit and USB cable are included.)
Part no.: LEC-W2

Note) Cannot be used with the programless type (LECP1).

System Construction/Pulse Signal

System Construction/Fieldbus Network

Gateway (GW) unit Page 65
Applicable Fieldbus protocols
CC-Link Ver. 2.0
DeviceNet ${ }^{\text {TM }}$ PROFIBUS DP EtherNet/IPTM

CC-Link Ver. 2.0
DeviceNet ${ }^{\text {TM }}$ only

Branch connector Page 65 LEC-CGD
-Controller Page 55

- Communication cable LEC-CG1-■

Option

- Controller setting software Page 62 (Communication cable and USB cable are included.) Part no.: LEC-W2

 (A-miniB type) (Provided by customer)

-Teaching box Page 63
(With 3 m cable)
Part no.: LEC-T1-3JG \square

Features 11

SMC Electric Actuators

High Rigidity Slider Type AC Servo Motor

Guide Rod Slider Step Motor (Senora4 voci)

Rod Type Step Motor (Sesvola voci) Senvo Motor (R4 Voo

Slide Table Step Motor (senore4 voci) Seno Motor (re4 Voci)

\section*{| |
| :---: |
| | |
| | |

Miniature Step Motor (senoro2 V VOC)

CAT.ES100-92
Rod

Series LEPY

Size	Max. work load (kg)	Stroke (mm)
$\mathbf{6}$	1	$25,50,75$
$\mathbf{1 0}$	2	

Symmetrical type/L type Series LES $\square \mathbf{L}$

In-line motor type/D type Series LES $\square \mathbf{D}$

High rigidity type Series LESH

Basic type/R type Series LESH \square R

Size	Max. work load $\mathbf{(k g)}$	Stroke $(\mathbf{m m})$
$\mathbf{8}$	2	50,75
$\mathbf{1 6}$	6	50,100
$\mathbf{2 5}$	9	50,100 150

Symmetrical type/L type Series LESH \square L

In-line motor type/D type Series LESH \square D

Rotary Table (Step Motor (Sesoroza voci)

Gripper Step Motor (Servo/24 VDC)															
 CAT.ES100-77	2-finger type Series LEHZ				2-finger type With dust cover Series LEHZJ				2-finger type Long stroke Series LEHF			3-finger type Series LEHS			
	Series L	HZ			Series L	EHZJ			Series L			Series L	HS		
	Size	Max. grip	pping force (N)	Stroke/both	Size	Max. gri	pping force (N)	Stroke/both	Size	Max. gripping	Stroke/both	Size	Max. gri	ipping force (N)	Stroke/both
		Basic	Compact	sides (mm)		Basic	Compact	sides (mm)		force (N)	sides (mm)	Size	Basic	Compact	sides (mm)
	10	14	6	4	10	14	6	4	10	7	16 (32)	10	5.5	3.5	4
	16	14	8	6	16	14	8	6	20	28	24 (48)	20	22	17	6
	20	40	28	10	20	40	28	10	32	120	32 (64)	32	90	-	8
	25			14	25			14	40	180	40 (80)	40	130	-	12
	32	130	-	22					Note) (): Long strok					
	40	210	-	30											

Controller/Driver

Gateway Unit

Fieldbus-compatible gateway (GW) unit Series LEC-G

Applicable Fieldbus protocols	CCLink V2	DeviceNet	$\text { PROQFI }{ }^{\circledR B 1 U T}$	EtherNet/IP:
Max. number of connectable controllers	12	8	5	12

Driver

Electric Gripper 2-Finger Type Series LEHZ/LEHZJ/LEHF

Electric Gripper 3-Finger Type Series LEHS

Controller/Driver LEC

Step Motor (Servo/24 VDC) Type

© Electric Gripper 2-Finger Type Series LEHZ
Model Selection Page 1
How to Order Page 7
Specifications Page 9
Construction Page 10
Dimensions Page 11
Finger Options Page 14
Electric Gripper 2-Finger Type/With Dust Cover Series LEHZJ
Model Selection Page 15
How to Order Page 21
Specifications Page 23
Construction Page 24
Dimensions Page 25
Electric Gripper 2-Finger Type Series LEHF
Model Selection Page 27
How to Order Page 31
Specifications Page 33
Construction Page 34
Dimensions Page 35
©Model SelectionPage 40
How to Order Page 43
Specifications Page 45
Construction Page 46
Dimensions Page 47
Specific Product Precautions Page 49
©Step Motor (Servo/24 vDC) Controller/Driver
Step Data Input Type/series LECP6 Page 55
Controller Setting Kit/LEC-W2 Page 62
Teaching Box/LEC-T1 Page 63
Gateway Unit/Series LEC-G Page 65
Programless Controller/series LECP1 Page 68
Step Motor Driver/Series LECPA Page 74
Controller Setting Kit/LEC-W2 Page 81Teaching Box/LEC-T1Page 82

Front matter 2

Selection Procedure

Step 1 Check the gripping force.
Check the conditions.
Calculate the required gripping force.
Select the model from gripping force graph.

Select the pushing speed.

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note) the workpiece weight, or more.
Note) For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

Pushing force: 70\%

Pushing force is one of the values of step data that is input into the controller.
Gripping point distance: 30 mm

LEHZ20

When the LEHZ20 is selected.

- A gripping force of 27 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

Coefficient of friction μ	Attachment - Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

Note) - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.
If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Selection Procedure

Step 1 Check the gripping force: Series LEHZ

- Indication of gripping force

The gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

Basic

* Pushing force is one of the values of step data that is input into the controller.

LEHZ10

LEHZ16

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

Internal Gripping State

Compact

* Pushing force is one of the values of

LEHZ10L

LEHZ16L

Series LEHZ

Selection Procedure
Step 1 Check the gripping force: Series LEHZ

Basic \quad * Pushing force is one of the values of step data that is input into the controller.
LEHZ20

LEHZ25

LEHZ32

LEHZ40

* Pushing force is one of the values of step data that is input into the controller.

LEHZ20L

LEHZ25L

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

Basic

Compact

Step 2 Check the gripping point and overhang：Series LEHZ

－Decide the gripping position of the workpiece so that the amount of overhang＂ H ＂stays within the range shown in the figure below．
－If the gripping position is out of the limit，it may shorten the life of the electric gripper．

LEHZ16

LEHZ20

Internal Gripping State

＊Pushing force is one of the values of step data that is input into the controller．
Compact
LEHZ10L

LEHZ16L

LEHZ20L

Series LEHZ

Selection Procedure

Step 2 Check the gripping point and overhang: Series LEHZ
$\begin{array}{ll}\text { Basic } & \text { * Pushing force is one of the values of } \\ \text { step data that is input into the controller. }\end{array}$
LEHZ25

* Pushing force is one of the values of Compact step data that is input into the controller.

LEHZ25L

LEHZ32

LEHZ40

Step 3 Check the external force on fingers: Series LEHZ

Mp: Pitch moment

My: Yaw moment

H, L : Distance to the point at which the load is applied (mm)

Model	Allowable vertical load Fv [N]	Static allowable moment		
		Pitch moment: Mp [N•m]	Yaw moment: My [N•m]	Roll moment: Mr [N•m]
LEHZ10(L)K2-4	58	0.26	0.26	0.53
LEHZ16(L)K2-6	98	0.68	0.68	1.36
LEHZ20(L)K2-10	147	1.32	1.32	2.65
LEHZ25(L)K2-14	255	1.94	1.94	3.88
LEHZ32(L)K2-22	343	3	3	6
LEHZ40(L)K2-30	490	4.5	4.5	9

Note) Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } \mathbf{F}(\mathbf{N})=\frac{\mathbf{M} \text { (Static allowable moment) (N•m) }}{\mathbf{L} \times 10^{-3} *}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHZ16K2-6 guide. Therefore, it can be used. $\begin{aligned} \text { Allowable load } F & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N}) \\ \text { Load } \mathrm{f}=10(\mathrm{~N})< & 22.7(\mathrm{~N}) \end{aligned}$

Electric Gripper 2-Finger Type

Step Motor (Servo/24 VDC)

Series LEHZ LEHZ10, 16, 20, 25, 32, 40

How to Order

1 Size
10
16
20
25
32
40

2 Motor size

Nil	Basic
L Note)	Compact

Note) Size: 10, 16, 20, 25 only

5 Stroke $[\mathrm{mm}]$
Stroke/both sides Size $\mathbf{4}$ 10 $\mathbf{6}$ 16 $\mathbf{1 0}$ 20 $\mathbf{1 4}$ 25 $\mathbf{2 2}$ 32 $\mathbf{3 0}$ 40

6 Finger options

Nil	Basic (Tapped in opening/closing direction)
A	Side tapped mounting
B	Through-hole in opening/closing direction
C	Flat fingers

7 Motor cable entry

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Finger options

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^0]

8 Actuator cable type*

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

11) I/O cable length [m]* ${ }^{*}$

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6), page 73 (For LECP1) or page 80 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
(9) Actuator cable length [m]

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
\mathbf{A}	10^{*}
\mathbf{B}	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 9.

12 Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 56.)
10 Controller/Driver type*

Nil	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA	NPN
AP	(Pulse input type)	PNP

* For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 55	Page 68	Page 74

Specifications

Model			LEHZ10	LEHZ16	LEHZ20	LEHZ25	LEHZ32	LEHZ40
	Opening/closing stroke (Both sides)		4	6	10	14	22	30
	Gripping force [N] Note 1) Note 3)	Basic	6 to 14		16 to 40		52 to 130	84 to 210
		Compact	2 to 6	3 to 8	11 to 28		-	-
	Opening and closing speed/ Pushing speed [mm/s] Note 2) Note 3)		5 to 80/5 to 50		5 to 100/5 to 50		5 to 120/5 to 50	
	Drive method		Slide screw + Slide cam					
	Finger guide type		Linear guide (No circulation)					
	Repeatability [mm] Note 4)		± 0.02					
	Repeated length measurement accuracy [mm] Note 5)		± 0.05					
	Finger backlash/ both sides [mm] Note 6)		0.5 or less				1.0 or less	
	Impact/Vibration resistance [m/s²] ${ }^{\text {Noie }}$ 7)		150/30					
	Max. operating frequency [C.P.M]		60					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)					
	Weight [g]	Basic	165	220	430	585	1120	1760
		Compact	135	190	365	520	-	-
Electric specifications	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor type		Step motor (Servo/24 VDC)					
	Encoder		Incremental A/B phase (800 pulse/rotation)					
	Rated voltage [V]		24 VDC $\pm 10 \%$					
	Power consumption/ Standby power consumption whenoperating [W] Note 8) operating [W] Note 8	Basic	11/7		28/15		34/13	36/13
		Compact	8/7		22/12		-	-
	Max. instantaneous power consumption [W] Note 9)	Basic	19		51		57	61
		Compact	14		42		-	-

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Positioning force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZ10/16, $\pm 25 \%$ (F.S.) for LEHZ20/25 and $\pm 20 \%$ (F.S.) for LEHZ32/40

Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece
Note 5) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 6) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening
Note 7) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 8) The power consumption (including the controller) is for when the gripper is operating
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.
Note 9) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.

How to Mount

a) When using the thread on the side of the body

b) When using the thread on the mounting plate

c) When using the thread on the back of the body

Construction
Series LEHZ

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Motor plate	Aluminum alloy	Anodized
$\mathbf{3}$	Guide ring	Aluminum alloy	
4	Slide nut	Stainless steel	Heat treatment + Special treatment
$\mathbf{5}$	Slide bolt	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	Needle roller	High carbon chromium bearing steel	
$\mathbf{7}$	Needle roller	High carbon chromium bearing steel	
$\mathbf{8}$	Finger assembly	-	
9	Lever	Special stainless steel	
$\mathbf{1 0}$	Step motor (Servo/24 VDC)	-	

Replacement Parts (8) Finger Assembly

Size	Basic (Nil)	Side tapped mounting (A)	Through-hole in opening/ closing direction (B)	Flat fingers (C)

Series LEHZ

Dimensions

LEHZ10(L)K2-4

	$[\mathrm{mm}]$	
Model	\mathbf{L}	$(\mathbf{L} \mathbf{1})$
LEHZ10K2-4 \square	103.8	(59.7)
LEHZ10LK2-4 \square	87.2	(43.1)

$\underline{4-0.1}$		When closed: $11_{-0.5}^{+0.2}$ When opened: $15_{-0.5}^{+0.2}$	(Finger operating range: 11 to 16) Note)
	$\xrightarrow{19}$	Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces	

LEHZ16(L)K2-6

 and facilities around the fingers.

Dimensions
LEHZ2O(L)K2-10
Motor cable entry: Entry on the front side

		$[\mathrm{mm}]$
Model	\mathbf{L}	$\mathbf{(L \mathbf { L }} \mathbf{1}$
LEHZ20K2-10 \square	129.6	(61.8)
LEHZ20LK2-10 \square	115.6	(47.8)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHZ25(L)K2-14

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Series LEHZ

Dimensions

LEHZ40K2-30

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Series LEHZ

Finger Options

Side Tapped Mounting (A)

Model	A	B	C	MM
LEHZ10(L)K2-4A \square	3	5.7	2	M2.5 $\times 0.45$
LEHZ16(L)K2-6A \square	4	7	2.5	M3 $\times 0.5$
LEHZ20(L)K2-10A \square	5	9	4	M 4×0.7
LEHZ25(L)K2-14A \square	6	12	5	M5 x 0.8
LEHZ32K2-22A \square	7	14	6	M6 x 1
LEHZ40K2-30A \square	9	17	7	M8 $\times 1.25$

Through-hole in Opening/Closing Direction (B)

Model	A	B	\mathbf{H}
H			
LEHZ10(L)K2-4B \square	3	5.7	2.9
LEHZ16(L)K2-6B \square	4	7	3.4
LEHZ20(L)K2-10B \square	5	9	4.5
LEHZ25(L)K2-14B \square	6	12	5.5
LEHZ32K2-22B \square	7	14	6.6
LEHZ40K2-30B \square	9	17	9

Flat Fingers (C)

$4 \times$ MM, thread length L

* Thread for attachment mounting

[mm]

Model	A	B	C	D	F	G		J	K	MM	L	W	Weight (g)
						When opened	When closed						
LEHZ10K2-4C \square	2.45	6	5.2	10.9	2	$5.4{ }_{-0.2}^{0}$	$1.4{ }_{-0.2}^{0}$	4.45	$2 \mathrm{H} 9{ }_{0}^{+0.025}$	M2.5 x 0.45	5	$5{ }_{-0.05}^{0}$	165
LEHZ10LK2-4C \square													135
LEHZ16K2-6C \square	3.05	8	8.3	14.1	2.5	$7.4{ }_{-0.2}^{0}$	$1.4{ }_{-0.2}^{0}$	5.8	$2.5 \mathrm{H} 9^{+0.025}$	M3 x 0.5	6	$8{ }_{-0.05}^{0}$	220
LEHZ16LK2-6C \square													190
LEHZ20K2-10C \square	3.95	10	10.5	17.9	3	$11.6{ }_{-0.2}^{0}$	$1.6{ }_{-0.2}^{0}$	7.45	$3 \mathrm{H} 9+0.025$	M4 x 0.7	8	$10_{-0.05}^{0}$	430
LEHZ20LK2-10C \square													365
LEHZ25K2-14C \square	4.9	12	13.1	21.8	4	$16{ }_{-0.2}^{0}$	$2{ }_{-0.2}^{0}$	8.9	$4 \mathrm{H} 9{ }_{0}^{+0.030}$	M5 x 0.8	10	$12{ }_{-0.05}^{0}$	575
LEHZ25LK2-14C \square													510
LEHZ32K2-22C \square	7.3	20	18	34.6	5	25-0.2	$3_{-0.2}^{0}$	14.8	$5 \mathrm{H} 9{ }_{0}^{+0.030}$	M6x 1	12	15-0.05	1145
LEHZ40K2-30C \square	8.7	24	22	41.4	6	$33_{-0.2}^{0}$	$3_{-0.2}^{0}$	17.7	$6 \mathrm{H} 9{ }^{+0.030}$	M8 $\times 1.25$	16	$18{ }_{-0.05}^{0}$	1820

Selection Procedure

Check the gripping force.

Check the gripping point and overhang.

Step 1 Check the of gripping force.

Check the
conditions.
:---:
required gripping force.
:---:
gripping force graph.
:---:

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times Note the workpiece weight, or more.
Note) For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.

Required gripping force

$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

Pushing force: 70\%
Pushing force is one of the values of step data that is input into the controller.
Gripping point distance: 30 mm

LEHZJ20

When the LEHZJ20 is selected.

- A gripping force of 27 N is obtained from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross.

Note) Confirm the pushing speed range from the determined pushing force [\%].

With "a" representing the margin, " F " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathbf{m g}}{2 \times \mu} \times \mathbf{a}
$$

"Gripping force at least 10 to $\mathbf{2 0}$ times the workpiece weight"

- The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

When $\mu=\mathbf{0 . 2}$	When $\mu=0.1$
$\mathbf{F}=\frac{\mathbf{m g}}{2 \times 0.2} \times \mathbf{4}=10 \times \mathrm{mg}$	$\mathbf{F}=\frac{\mathbf{m g}}{2 \times 0.1} \times \mathbf{4}=20 \times \mathrm{mg}$
$10 \times$ Workpiece weight	$20 \times$ Workpiece weight

<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)
Coefficient of friction μ Attachment - Material of workpieces (guideline)

0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

Note) • Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.

- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Selection Procedure

Step 1 Check the gripping force: Series LEHZJ

- Indication of gripping force

The gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

Basic

* Pushing force is one of the values of

LEHZJ10

LEHZJ16

- Set the workpiece gripping point " L " so that it is within the range shown in the figure below.

Internal Gripping State

Compact

* Pushing force is one of the values of step data that is input into the controller.

LEHZJ10L

LEHZJ16L

Series LEHZJ

Selection Procedure

Step 1 Check the gripping force: Series LEHZJ

LEHZJ25

* Pushing force is one of the values of step data that is input into the controller.

LEHZJ2OL

LEHZJ25L

Selection of Pushing Speed

- Set the [Pushing force] and [Trigger level] within the range shown in the figure below.

Basic

Compact

LEHZJ10L, LEHZJ16L

LEHZJ20L, LEHZJ25L

Step 2 Check the gripping point and overhang：Series LEHZJ

－Decide the gripping position of the workpiece so that the amount of overhang＂ H ＂stays within the range shown in the figure below．
－If the gripping position is out of the limit，it may shorten the life of the electric gripper．

＊Pushing force is one of the values of

LEHZJ16

LEHZJ20

Internal Gripping State
＊Pushing force is one of the values of Compact step data that is input into the controller．

LEHZJ10L

LEHZJ16L

LEHZJ20L

Series LEHZJ

Selection Procedure

Step 2 Check the gripping point and overhang: Series LEHZJ

Basic $\quad * \begin{aligned} & \text { Pushing force is one of the values of } \\ & \text { step data that is input into the controller. }\end{aligned}$
LEHZJ25

Compact $\quad \begin{aligned} & * \text { Pushing force is one of the values of } \\ & \text { step data that is input into the controller. }\end{aligned}$

LEHZJ25L

Step 3 Check the external force on fingers: Series LEHZJ

Fv: Allowable vertical load

Mp: Pitch moment

My: Yaw moment

Mr: Roll moment
H, L : Distance to the point at which the load is applied (mm)

Model	Allowable vertical load Fv [N]	Static allowable moment		
		Pitch moment: Mp [N•m]	Yaw moment: My [N•m]	Roll moment: Mr [N•m]
LEHZJ10(L)K2-4		0.26	0.26	0.53
LEHZJ16(L)K2-6	98	0.68	0.68	1.36
LEHZJ20(L)K2-10	147	1.32	1.32	2.65
LEHZJ25(L)K2-14	255	1.94	1.94	3.88

Note) Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } \mathbf{F}(\mathbf{N})=\frac{\mathbf{M} \text { (Static allowable moment) }(\mathbf{N} \cdot \mathbf{m})}{\begin{array}{l} \mathbf{L} \times 10^{-3} * \end{array}}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $L=30 \mathrm{~mm}$ from the LEHZJ16K2-6 guide. Therefore, it can be used. $\begin{aligned} \text { Allowable load } F & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N}) \\ \text { Load } f=10(\mathrm{~N})< & 22.7(\mathrm{~N}) \end{aligned}$

Electric Gripper 2-Finger Type/With Dust Cover

Step Motor (Servo/24 VDC)

Series LEHZJ C ϵ s.s. LEHZJ10, 16, 20, 25
 RoHS

How to Order

(5) 2-finger type
6 Stroke [mm]

Stroke/both sides	Size
$\mathbf{4}$	10
$\mathbf{6}$	16
$\mathbf{1 0}$	20
$\mathbf{1 4}$	25

7 Dust cover type

Nil	Chloroprene rubber (CR)
K	Fluororubber (FKM)
\mathbf{S}	Silicone rubber (Si)

[^1]The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^2]
(9) Actuator cable type*

| Nil | |
| :---: | :---: | Without cable

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

12 I/O cable length [m]*1

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6), page 73 (For LECP1) or page 80 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
10 Actuator cable length [m]

$\mathbf{N i I}$	Without cable
$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 23.

(13) Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 56.)

11 Controller/Driver type*

Nil	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1 (Programless type)	NPN
1P		PNP
AN	LECPA (Pulse input type)	NPN
AP		PNP

* For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 55	Page 68	Page 74

Specifications

Model			LEHZJ10	LEHZJ16	LEHZJ20	LEHZJ25
	Opening/closing stroke (Both sides)		4	6	10	14
	Gripping force [N] Note 1) Note 3)	Basic	6 to 14		16 to 40	
		Compact	3 to 6	4 to 8		28
	Opening and closing speed/Pushing speed [mm/s] ${ }^{\text {Weie] \| Weies) }}$		5 to 80/5 to 50		5 to 100/5 to 50	
	Drive method		Slide screw + Slide cam			
	Finger guide type		Linear guide (No circulation)			
	Repeatability [mm] Note 4)		± 0.02			
	Repeated length measurement accuracy [mm] ${ }^{\text {Note }}$)		± 0.05			
	Finger backlash/ both sides [mm] Note 6)		0.5 or less			
	Impact/Vibration resistance [m/s²] Note 7)		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Weight [g]	Basic	170	230	440	610
		Compact	140	200	375	545
Electric specifications	Motor size		$\square 20$		$\square 28$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]		24 VDC $\pm 10 \%$			
	Power consumption/ Standby power consumption whenoperating [W] Note 8) operating [W]	Basic	11/7		28/15	
		Compact	8/7		22/12	
	Max. instantaneous power consumption [W] Note 9)	Basic	19		51	
		Compact	14		42	

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Positioning force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZJ10/16 and $\pm 25 \%$ (F.S.) for LEHZJ20/25.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 5) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position
Note 6) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening. Note 7) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 8) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.
Note 9) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.
How to Mount
a) When using the thread on the side of the body

b) When using the thread on the mounting plate

c) When using the thread on the back of the body

Construction
Series LEHZJ

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Motor plate	Aluminum alloy	Anodized
3	Guide ring	Aluminum alloy	
4	Slide nut	Stainless steel	Heat treatment + Special treatment
5	Slide bolt	Stainless steel	Heat treatment + Special treatment
6	Needle roller	High carbon chromium bearing steel	
7	Needle roller	High carbon chromium bearing steel	
8	Body plate	Aluminum alloy	Anodized
9	Dust cover	CR	Chloroprene rubber
		Si	Fluororubber
	Finger assembly	-	Silicone rubber
11	Encoder dust cover	Si	
12	Lever	Special stainless steel	
13	Step motor (Servo/24 VDC)	-	

Replacement Parts

No.	Description			LEHZJ10	LEHZJ16	LEHZJ20	LEHZJ25
9	Dust cover	Material	CR	MHZJ2-J10	MHZJ2-J16	MHZJ2-J20	MHZJ2-J25
			FKM	MHZJ2-J10F	MHZJ2-J16F	MHZJ2-J20F	MHZJ2-J25F
			Si	MHZJ2-J10S	MHZJ2-J16S	MHZJ2-J20S	MHZJ2-J25S
10	Finger assembly			MHZJ-A1002	MHZJ-A1602	MHZJ-A2002	MHZJ-A2502

[^3]
Dimensions

LEHZJ10(L)K2-4

	$[\mathrm{mm}]$	
Model	L	$\mathbf{(L 1})$
LEHZJ10K2-4 \square	109.8	(62.7)
LEHZJ10LK2-4 \square	93.2	(46.1)

LEHZJ16(L)K2-6

$[\mathrm{mm}]$		
Model	\mathbf{L}	$\mathbf{(L \mathbf { 1 })}$
LEHZJ16K2-6 \square	118.6	(62.7)
LEHZJ16LK2-6 \square	102	(46.1)

Note) Range within which the fingers can move when it returns to origin.
Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.
(Finger operating range: 14.6 to 21.6) Note)

Dimensions

LEHZJ20(L)K2-10

$[\mathrm{mm}]$		
Model	\mathbf{L}	$\mathbf{(\mathbf { L } 1)}$
LEHZJ2OK2-10 \square	135.7	(64.8)
LEHZJ2OLK2-10	121.7	(50.8)

LEHZJ25(L)K2-14

	[mm]	
Model	\mathbf{L}	$\mathbf{(L \mathbf { L }})$
LEHZJ25K2-14 \square	146.7	(64.8)
LEHZJ25LK2-14 \square	132.7	(50.8)

Selection Procedure

Step 1
Check the gripping force. Step 2 Check the gripping point and overhang.

Check the external force on fingers.

Step 1 Check the gripping force.

Check the

Example

Workpiece mass: 0.1 kg

Calculate the required gripping force.

Select the model from gripping force graph.

Select the pushing speed.

Selection Procedure

Step 1 Check the gripping force: Series LEHF

- Indication of gripping force

Gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

LEHF10

LEHF40

LEHF20

LEHF32

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

[^4]
Series LEHF

Selection Procedure

Step 2 Check the gripping point and overhang: Series LEHF

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

External Gripping State

LEHF10

LEHF32

Internal Gripping State

LEHF20

LEHF40

[^5]Step 3 Check the external force on fingers：Series LEHF

H, L ：Distance to the point at which the load is applied（mm）

Model	Allowable vertical load Fv［N］	Static allowable moment		
		Pitch moment：Mp［N•m］	Yaw moment：My［N•m］	Roll moment：Mr［N•m］
LEHF10K2－\square	58	0.26	0.26	0.53
LEHF20K2－\square	98	0.68	0.68	1.4
LEHF32K2－\square	176	1.4	1.4	2.8
LEHF40K2－\square	294	2	2	4

Note）Values for load in the table indicate static values．

Calculation of allowable external force（when moment load is applied）	Calculation example
$\text { Allowable load } \mathbf{F}(\mathbf{N})=\frac{\mathbf{M} \text { (Static allowable moment) } \mathbf{(N \cdot m})}{\mathbf{L \times 1 0 ^ { - 3 } *}}$	When a static load of $f=10 \mathrm{~N}$ is operating，which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHF20K2－\square guide． Therefore，it can be used． $\begin{aligned} \text { Allowable load } F & =\frac{0.68}{30 \times 10^{-3}} \\ & =22.7(\mathrm{~N}) \\ \text { Load } f=10(\mathrm{~N})< & 22.7(\mathrm{~N}) \end{aligned}$

Electric Gripper 2-Finger Type

Step Motor (Servo/24 VDC)

Series LEHF
 (\in © ${ }^{\circ}$ LEHF10, 20, 32, 40

How to Order

1 Size
10
20
32
40

Lead
K
Basic

2-finger type
Stroke [mm]

Stroke/both sides		Size
Basic	Long stroke	
$\mathbf{1 6}$	$\mathbf{3 2}$	10
$\mathbf{2 4}$	$\mathbf{4 8}$	20
$\mathbf{3 2}$	$\mathbf{6 4}$	32
$\mathbf{4 0}$	$\mathbf{8 0}$	40

Motor cable entry

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole. [UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^6]

6 Actuator cable type*

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
(9) I/O cable length [m] ${ }^{* 1}$

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6), page 73 (For LECP1) or page 80 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

7 Actuator cable length [m]

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
\mathbf{A}	10^{*}
\mathbf{B}	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 23.

8 Controller/Driver type*

Nil	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA	NPN
AP	(Pulse input type)	PNP

* For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.

(10) Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 56.)

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 55	Page 68	Page 74

Specifications

Model			LEHF10	LEHF20	LEHF32	LEHF40
Actuator specifications	Opening/closing stroke (Both sides)	Basic	16	24	32	40
		Long stroke	32	48	64	80
	Gripping force [N] Note 1) Note 3)		3 to 7	11 to 28	48 to 120	72 to 180
	Opening and closing speed/Pushing speed [mm/s] ${ }^{\text {Note 2/ Noie 3] }}$		5 to 80/5 to 20	5 to 100/5 to 30		
	Drive method		Slide screw + Belt			
	Finger guide type		Linear guide (No circulation)			
	Repeatability [mm] Note 4)		± 0.05			
	Repeated length measurement accuracy [mm] Note 5)		± 0.05			
	Finger backlash/both sides [mm] Note 6)		1.0 or less			
	Impact/Vibration resistance [m/s ${ }^{\text {2 }}$] Note 7)		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Weight [g]	Basic	340	610	1625	1980
		Long stroke	370	750	1970	2500
-	Motor size		$\square 20$	$\square 28$	$\square 42$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]		24 VDC $\pm 10 \%$			
	Power consumption/Standby power consumption when operating[W] Wies)		11/7	28/15	34/13	36/13
	Max. instantaneous power consumption [W] Note 9)		19	51	57	61

Note 1) Gripping force should be from 10 to 20 times the workpiece weight. Positioning force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHF10, $\pm 25 \%$ (F.S.) for LEHF20 and $\pm 20 \%$ (F.S.) for LEHF32/40.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is repeatedly performed by the same sequence for the same workpiece.
Note 5) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
Note 6) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 7) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Note 8) The power consumption (including the controller) is for when the gripper is operating. The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.

How to Mount

Note 9) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.
a) When using the thread on the body

b) When using the thread on the mounting plate

c) When using the thread on the back of the body

Construction
Series LEHF

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Side plate A	Aluminum alloy	Anodized
3	Side plate B	Aluminum alloy	Anodized
4	Slide shaft	Stainless steel	Heat treatment + Special treatment
5	Slide bushing	Stainless steel	
6	Slide nut	Stainless steel	Heat treatment + Special treatment
7	Slide nut	Stainless steel	Heat treatment + Special treatment
8	Fixed plate	Stainless steel	
9	Motor plate	Carbon steel	
10	Pulley A	Aluminum alloy	
11	Pulley B	Aluminum alloy	
12	Bearing stopper	NBR	
13	Rubber bushing	-	
14	Bearing	-	
15	Belt	-	
16	Flange	-	
17	Finger assembly	-	
18	Step motor (Servo/24 VDC)		

Series LEHF

Dimensions

LEHF10K2-16: Basic

LEHF10K2-32: Long Stroke

Dimensions

Dimensions

LEHF32K2-64: Long Stroke

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Dimensions

LEHF40K2-40: Basic

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers

LEHF40K2-80: Long Stroke

Selection Procedure

Step Check the gripping force．

Check the

conditions． \quad\begin{tabular}{c}
Calculate the

Select the model from

gripping force graph．

\quad

Select the

pushing speed．
\end{tabular}

| Example |
| :--- | :--- |
| Guidelines for the selection of the gripper
 with respect to workpiece mass |
| Although conditions differ according to the workpiece mass： 0.1 kg |
| shape and the coefficient of friction between the |
| attachments and the workpiece，select a model that |
| can provide a gripping force of 7 to 13 times Note） |
| the workpiece weight，or more． |
| Note）For details，refer to the calculation of required gripping |
| force． |
| If high acceleration or impact forces are encountered |
| during motion，a further margin of safety should be |
| considered． |
| Example）When it is desired to set the gripping force at |
| 13 times or more above the workpiece weight． |
| Required gripping force |
| $=0.1 \mathrm{~kg} \times 13 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 12.7 \mathrm{~N}$ or more |

Pushing force：70\％
Gripping point distance： 30 mm

When the LEHS20 is selected．

－A gripping force of 14 N is obtained from the intersection point of gripping point distance $\mathrm{L}=30$ mm and pushing force of 70% ．
－Gripping force is 14 times greater than the workpiece weight，and therefore satisfies a gripping force setting value of 13 times or more．

－Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{sec}$ of the pushing speed cross．

Note）Confirm the pushing speed range from the determined pushing force［\％］．

With＂a＂representing the margin， ＂F＂is determined by the following formula：

$$
\mathbf{F}=\frac{\mathrm{mg}}{3 \times \mu} \times \mathbf{a}
$$

＂Gripping force at least 7 to 13 times the workpiece weight＂
－The＂7 to 13 times or more of the workpiece weight＂recommended by SMC is calculated with a margin of＂a＂$=4$ ，which allows for impacts that occur during normal transportation，etc．

When gripping a workpiece as in the figure to the left，and with the following definitions， F ：Gripping force（ N ）
μ ：Coefficient of friction between the attachments and the workpiece
m ：Workpiece mass（kg）
g ：Gravitational acceleration（ $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）
mg ：Workpiece weight（ N ）
the conditions under which the workpiece will not drop are
$\underline{\underline{3}} \times \mu \mathrm{F}>\mathrm{mg}$
$\overline{\text { 亿 }}$
Number of fingers
and therefore， $\mathbf{F}>\frac{\mathrm{mg}}{3 \times \mu}$

Series LEHS

Selection Procedure

Step Check the gripping force: Series LEHS

- Indication of gripping force

The gripping force shown in the graphs on page 42 is expressed as "F", which is the gripping force of one finger, when three fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

F: Gripping force

F: Gripping force

Step Check the gripping force: Series LEHS

LEHS20

LEHS32

LEHS40

* Pushing force is one of the values of step data that is input into the controller.
Compact LEHS10L

LEHS20L

Electric Gripper 3-Finger Type

Step Motor (Servo/24 VDC)

Series LEHS $\subset \in$ sin LEHS10, 20, 32, 40

How to Order

1 Size
10
20
32
40

Note) Size: 10, 20 only
(5) Stroke [mm]

Stroke/diameter	Size
$\mathbf{4}$	10
$\mathbf{6}$	20
$\mathbf{8}$	32
$\mathbf{1 2}$	40

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Motor cable entry

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^7]

10 I/O cable length [m]*1

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 61 (For LECP6), page 73 (For LECP1) or page 80 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

Nil	Without controller/driver	
$\mathbf{6 N}$	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
	(Programless type)	PNP
1P	LECPA	NPN
	AP	(Pulse input type)

* For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.

| 8 Actuator cable length [m] |
| :---: | :---: |
| Nil Without cable
 $\mathbf{1}$ 1.5
 3 3
 5 5
 8 8^{*}
 A 10^{*}
 B 15^{*}
 C 20^{*} |

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 45.
(9) Controller/Driver type*

(11) Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 56.)

Compatible Controllers/Driver

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 55	Page 68	Page 74

Specifications

Model			LEHS10	LEHS20	LEHS32	LEHS40
	Opening/closing stroke (diameter)		4	6	8	12
	Gripping force [N] Note 1) Note 3)	Basic	2.2 to 5.5	9 to 22	36 to 90	52 to 130
		Compact	1.4 to 3.5	7 to 17	-	-
	Opening and closing speed/ Pushing speed [mm/s] Note 2) Note 3)		$\begin{aligned} & 5 \text { to } 70 / \\ & 5 \text { to } 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \text { to } 80 / \\ & 5 \text { to } 50 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \text { to } 100 / \\ 5 \text { to } 50 \\ \hline \end{gathered}$	$\begin{gathered} 5 \text { to } 120 / \\ 5 \text { to } 50 \\ \hline \end{gathered}$
	Drive method		Slide screw + Wedge cam			
	Repeatability [mm] ${ }^{\text {Note 4) }}$		± 0.02			
	Repeated length measurement accuracy [mm] Note 5)		± 0.05			
	Finger backlash/dia. [mm] ${ }^{\text {Note 6) }}$		0.5 or less			
	Impact/Vibration resistance [$\mathrm{m} / \mathrm{s}^{2}$] Note 7)		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range $\left.{ }^{\circ} \mathrm{C}\right]$		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Weight [g]	Basic	185	410	975	1265
		Compact	150	345	-	-
Electric specifications	Motor size		$\square 20$	$\square 28$	$\square 42$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental A/B phase (800 pulse/rotation)			
	Rated voltage [V]		24 VDC $\pm 10 \%$			
	Power consumption/ Standby power consumption whenoperating [W] Note 8) operating [W] Note 8)	Basic	11/7	28/15	34/13	36/13
		Compact	8/7	22/12	-	-
	Max. instantaneous power consumption [W] Note 9)	Basic	19	51	57	61
		Compact	14	42	-	-

Note 1) Gripping force should be from 7 to 13 times the workpiece weight. Positioning force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHS10, $\pm 25 \%$ (F.S.) for LEHS20 and $\pm 20 \%$ (F.S.) for LEHS32/40.
Note 2) Pushing speed should be set within the range during pushing (gripping) operation. Otherwise, it may cause malfunction. The opening/closing speed and pushing speed are for both fingers. The speed for one finger is half this value.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Repeatability means the variation of the gripping position (workpiece position) when the gripping operation is Repeatability means the variation of the gripping position (workpiece
repeatedly performed by the same sequence for the same workpiece.
Note 5) Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position. workpiece is repeatedly held in the same position
Note 6) There will be no influence of backlash during pushing (gripping) operation. Make the stroke longer for the amount of backlash when opening.
Note 7) Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axialdirection and a perpendicular direction to the lead screw. (Test was performed with the gripper in
the initial state.) the initial state.)
Note 8) The power consumption (including the controller) is for when the gripper is operating.
The standby power consumption when operating is for when the gripper is stopped in the set position during operation, including the energy saving mode when gripping.
Note 9) The maximum instantaneous power consumption (including the controller) is for when the gripper is operating. This value can be used for the selection of the power supply.

How to Mount

a) Mounting A type
(when using the thread on the mounting plate)

b) Mounting B type
(when using the thread on the back of the body)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Motor plate	Aluminum alloy	Anodized
$\mathbf{3}$	Guide ring	Aluminum alloy	
$\mathbf{4}$	Slide cam	Stainless steel	Heat treatment + Special treatement
$\mathbf{5}$	Slide bolt	Stainless steel	Heat treatment + Special treatement
$\mathbf{6}$	Finger	Carbon steel	Heat treatment + Special treatement
$\mathbf{7}$	End plate	Stainless steel	
$\mathbf{8}$	Step motor (Servo/24 VDC)		

Series LEHS

Dimensions

LEHS10(L)K3-4

$[\mathrm{mm}]$		
Model	\mathbf{L}	$\left(\mathbf{L}_{1}\right)$
LEHS10K3-4	89.1	(59.6)
LEHS10LK3-4	72.6	(43.1)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

LEHS20(L)K3-6

	$[\mathrm{mm}]$	
Model	\mathbf{L}	$\mathbf{(L 1)}$
LEHS20K3-6	98.8	(61.8)
LEHS20LK3-6	84.8	(47.8)

Note) Range within which the fingers can move when it returns to origin. Make sure a workpiece mounted on the fingers does not interfere with the workpieces and facilities around the fingers.

Dimensions

LEHS32K3-8

When opened: 14
(Finger operating range: 9.5 to 14.5) Note)

Design/Selection

. Warning

1. Keep the specified gripping point.

If the specified gripping range is exceeded, excessive moment is applied to the sliding part of the finger, which may have an adverse affect on the life of the product.

L: Gripping point H: Overhang

O "L" and "H" are appropriate.

Gripping position

\times " L " is too long. $\quad \times$ " H " is too long.
2. Design the attachment to be lightweight and short.

A long and heavy attachment will increase inertia force when the product is opened or closed, which causes play on the finger. Even if the gripping point of the attachment is within a specified range, design it to be short and lightweight as possible.
For a long or large workpiece, select a model of a larger size or use two or more grippers together.
3. Provide a runoff space for attachment when a workpiece is extremely thin or small.
Without a runoff space, the product cannot perform stable gripping, and the displacement of a workpiece or gripping failure

4. Select the model that allows for gripping force in relation to the workpiece weight, as appropriate.
The selection of inappropriate model can cause dropping of a workpiece. Gripping force should be from 10 to 20 times (LEHZ, LEHF) or 7 to 13 times (LEHS) of the workpiece weight.
Gripping Force Accuracy
LEHZ(J)10(L) LEHZ(J)16(L) LEHZ(J)20(L) LEHZ(J)25(L) LEHZ32 LEHZ40

$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	$\pm 20 \%$ (F.S.)	
LEHF10	LEHF20	LEHF32 LEHF40	
$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	$\pm 20 \%$ (F.S.)	
LEHS10(L)	LEHS20(L)	LEHS32 LEHS40	
$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	$\pm 20 \%$ (F.S.)	

5. Do not use the product in applications where excessive external force (including vibration) or impact force is applied to it.
It may lead to breakage or galling, which causes operation failure. Do not apply impact and vibration outside of the specifications.
6. Select the model that allows for opening and closing width relative to a workpiece.
The selection of an inappropriate model will cause gripping at unexpected positions due to variable opening and closing width of the product and the diameter of a workpiece the product can handle. It is also necessary to make a larger stroke to overcome backlash created when the product will open after gripping.

Mounting

© Warning

1. Do not drop or hit the gripper to avoid scratching and denting the mounting surfaces.
Even slight deformation can cause the deterioration of accuracy and operation failure.
2. When mounting the attachment, use screws with adequate length and tighten them with adequate torque within the specified torque range.
Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Mounting of Attachment to Finger

The attachment should be mounted at the torque specified in the following table by screwing the bolt into the finger mounting female thread and hole.
<Series LEHZ>

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHZ(J)10(L)	$\mathrm{M} 2.5 \times 0.45$	0.3
LEHZ(J)16(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ(J)20(L)	$\mathrm{M} 4 \times 0.7$	1.4
LEHZ(J)25(L)	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ32	$\mathrm{M} 6 \times 1$	5.0
LEHZ40	$\mathrm{M} 8 \times 1.25$	12.0

<Series LEHF>

Model	Bolt	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]
LEHF10	$\mathrm{M} 2.5 \times 0.45$	0.3
LEHF20	$\mathrm{M} 3 \times 0.5$	0.9
LEHF32	$\mathrm{M} 4 \times 0.7$	1.4
LEHF40	$\mathrm{M} 4 \times 0.7$	1.4

<Series LEHS>

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHS10(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHS20(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHS32	$\mathrm{M} 4 \times 0.7$	1.4
LEHS40	$\mathrm{M} 5 \times 0.8$	3.0

Series LEH
 Electric Grippers／ Specific Product Precautions 2

\triangle
Be sure to read before handling．Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions．
Please download it via our website，http：／／www．smcworld．com

Mounting

Mounting of Electric Gripper，Series LEHZ／LEHZJ
When using the thread on the side of the body

$\frac{\text { Attachment }}{\text { Finger }}$
When using the thread on the mounting plate

Model	Bolt	Max． tightening torque ［N•m］
LEHZ（J）10（L）	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ（J）16（L）	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ（J）20（L）	$\mathrm{M} 4 \times 0.7$	1.4
LEHZ（J）25（L）	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ32	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ40	$\mathrm{M} 6 \times 1$	5.0

When using the thread on the back of the body

| Model | Bolt | Max．
 tightening
 torque
 $[\mathrm{N} \cdot \mathrm{m}]$ | Max．
 screw－in
 depth
 $\mathrm{L}[\mathrm{mm}]$ |
| :--- | :---: | :---: | :---: | :---: |
| LEHZ（J）10（L） | $\mathrm{M} 4 \times 0.7$ | 1.4 | 6 |
| LEHZ（J）16（L） | $\mathrm{M} 4 \times 0.7$ | 1.4 | 6 |
| LEHZ（J）20（L） | $\mathrm{M} 5 \times 0.8$ | 3.0 | 8 |
| LEHZ（J）25（L） | $\mathrm{M} 6 \times 1$ | 5.0 | 10 |
| LEHZ32 | $\mathrm{M} 6 \times 1$ | 5.0 | 10 |
| LEHZ40 | $\mathrm{M} 8 \times 1.25$ | 12.0 | 14 |

Mounting of Electric Gripper，Series LEHF
When using the thread on the body

When using the thread on the mounting plate

Model	Bolt	Max． tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHF10	$\mathrm{M} 4 \times 0.7$	1.4
LEHF20	$\mathrm{M} 5 \times 0.8$	3.0
LEHF32	$\mathrm{M} 6 \times 1$	5.0
LEHF40	$\mathrm{M} 6 \times 1$	5.0

When using the thread on the back of the body

Model	Bolt	Max． tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max． screw－in depth $\mathrm{L}[\mathrm{mm}]$
LEHF10	$\mathrm{M} 5 \times 0.8$	3.0	10
LEHF20	$\mathrm{M} 6 \times 1$	5.0	12
LEHF32	$\mathrm{M} 8 \times 1.25$	12.0	16
LEHF40	$\mathrm{M} 8 \times 1.25$	12.0	16

Mounting of Electric Gripper，Series LEHS

When using the thread on the mounting plate

When using the thread on the back of the body

Mounting

© Warning

3. Tighten the electric gripper mounting screws to the specified torque.
Tightening to a torque greater than the specified range may cause malfunction, and insufficient tightening may cause displacement.
4. When fixing the attachment to the finger, avoid applying excessive torque to the finger.
Play or deteriorated accuracy can result.
5. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric gripper if required.
6. When a workpiece is to be removed when it is not energized, open or close the finger manually or remove the attachment beforehand.
When the product is operated with the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws that could lead to damage and malfunction of the product.
7. When gripping a workpiece, keep a gap in the horizontal direction to prevent the load from concentrating on one finger, to allow for workpiece misalignment.
For the same purpose, when moving a workpiece for alignment by the product, minimize the friction resistance created by the movement of the workpiece. The finger can be displaced, play or breakage.
8. Perform adjustment and confirmation to ensure there is no external force applied to the finger.
If the finger is subject to repetitive lateral load or impact load, it can cause play or breakage and the lead screw can get stuck, which results in operation failure. Allow a clearance to prevent the workpiece or the attachment from hitting gripper product at the end of the stroke.
1) Stroke end when fingers are open

2) Stroke end when gripper is moving

3) When turning over

9. Adjust the gripping point so that an excessive force will not be applied to the fingers when inserting a workpiece.
In particular, during a trial run, operate the product manually or at a low speed and check that the safety is assured without impact.

Handling

\triangle Caution

1. The parameters of the stroke and the opening/closing speed are for both fingers.
The stroke and the opening/closing speed for one finger is half a set parameter.
2. When gripping a workpiece by the product, be sure to set to the pushing operation.
Also, do not hit the workpiece to the finger and attachment in positioning operation or in the range of positioning operation. Otherwise, the lead screw can get caught and cause operation failure. However, if the workpiece cannot be gripped in pushing operation (such as a plastically deformed workpiece, rubber component, etc.), you can grip it in positioning operation with consideration to the elastic force of the workpiece. In this case, keep the driving speed for impact specified in item 3 on page 52.
When the operation is interrupted by a stop or temporary stop, and a pushing operation instruction is output just after operation is restarted, the operating direction will vary depending on the start position.

Handling

\triangle Caution

3．Keep the following driving speed range for pushing operation．

－LEHZ／LEHZJ： 5 to $50 \mathrm{~mm} / \mathrm{s}$－LEHF10： 5 to $20 \mathrm{~mm} / \mathrm{s}$

－LEHF20／32／40： 5 to $30 \mathrm{~mm} / \mathrm{s}$－LEHS： 5 to $50 \mathrm{~mm} / \mathrm{s}$
Operation at the speed outside of the range can get the lead screw caught and cause operation failure．
4．There is no backlash effect in pushing operation．
The return to origin is done by pushing operation．
The finger position can be displaced by the effect of the backlash during the positioning operation．
Take the backlash into consideration when setting the position．
5．Do not change the setting of energy saving mode．
When pushing（gripping）operation is continued，the heat generated by the motor can cause operation failure．
This is due to the self－lock mechanism in the lead screw，which makes the product keep the gripping force．To save the energy in this situation where the product is to be standby or continue to grip for extended periods of time，the product will be controlled to reduce current consumption（to 40% automatically after it has gripped a workpiece once）． If there is the reduction of gripping force seen in the product after a workpiece has been gripped and deformed over certain amount of time，contact SMC separately．
6．INP output signal
1）Positioning operation
When the product comes within the set range by step data［ln position］，the INP output signal will turn on
Initial value：Set to［0．50］or higher．
2）Pushing operation
When the effective force exceeds step data［Trigger LV］，the INP output signal will turn on．
Use the product within the specified range of［Pushing force］ and［Trigger LV］．
a）To ensure that the gripper holds the workpiece with the set ［Pushing force］，it is recommended that the［Trigger LV］be set to the same value as the［Pushing force］．
b）When the［Pushing force］and［Trigger LV］are set less than the specified range，the INP output signal will turn on from the pushing start position．
＜INP output signal in the controller version＞
－SV0． 8 or more
Although the product automatically switches to the energy saving mode（reduced current）after pushing operation is completed，the INP output signal remains ON．
－SV0． 7 or less
a．When［Trigger LV］is set to 40%（when the value is the same as the energy saving mode）
Although the product automatically switches to the energy saving mode（reduced current）after pushing operation is completed，the INP output signal remains ON．
b．When［Trigger LV］is set higher than 40%
The product is turned on after pushing operation is completed， but INP output signal will turn off when current consumption is reduced automatically in energy saving mode．
7．When releasing a workpiece，set the positioning force to 150% ．
If the torque is too small when a workpiece is gripped in pushing operation，the product can have galling and become unable to release the workpiece．
8．If the finger has galling due to operational setting error，etc．，open and close the finger manually．
When the workpiece is removed by manual operation，check the position of the manual override of the product，and allow a necessary space．At that time，be careful not to apply excessive torque to the manual override，which causes breakage and malfunction．

9．Self－lock mechanism

The product keeps a gripping force due to the self－lock mechanism in the lead screw．Also，it will not operate in opposite direction even when external force is applied during gripping a workpiece．
＜Type of Stops，Cautions＞
1）All the power supplies to the controller are shut off． When the power supply is turned on to restart operation，the controller will be initialized，and the product can drop a workpiece due to a motor magnetic pole detective operation．（It means that there is finger motions of partial strokes by the phase detection of motor after power supply is turned on．） Remove the workpiece before restarting operation．
2）＂EMG（stop）＂of the CN1 of the controller is shut off． When using the stop switch on the teaching box；
It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur when the power supply is turned on to restart operation．An alarm can take place when operation is restarted from stop．
3）＂M24V（motor driving power supply）＂of the CN1 of the controller is shut off．
It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur when the power supply is turned on to restart operation
An alarm can take place when stop is activated during operation or operation is restarted from stop．
10．Return to origin
1）It is recommended to set the directions of return to origin and workpiece gripping to the same direction．
If they are set opposite，there can be backlash，which worsens the measurement accuracy significantly．
2）If the direction of return to origin is set to CW（Internal gripping）； If the return to origin is performed with the product only，there can be significant deviation between different actuators．Use a workpiece to set return to origin．
3）If the return to origin is performed by using a workpiece； The stroke（operation range）will be shortened．Recheck the value of step data．
4）If basic parameters（Origin offset）are used；
When the return to origin is set with［Origin offset］，it is necessary to change the current position of the product． Recheck the value of step data．
11．In pushing（gripping）operation，set the product to a position of at least 0.5 mm away from a workpiece． （This position is referred to as a pushing start position．）
If the product is set to the same position as a workpiece，the following alarms may be generated and operation may become unstable．
a．＂Posn failed＂alarm is generated．
The product cannot reach a pushing start position due to variation in the width of workpieces．
b．＂Pushing ALM＂alarm is generated．
The product is pushed back from a pushing start position after starting to push．
12．When mounting the product，keep a 40 mm or longer diameter for bends in the cable．

\triangle Warning

1．When the product is to be removed，check it has not been gripping a workpiece．
There is a risk of dropping the workpiece．

Maintenance

Controller/Driver

Step Data Input Type \cdots.....Page 55
 Gateway UnitPage 65

Step Motor (Servo/24 VDC) Series LECP6

Series LEC-G

Programless Type

Step Motor (Servo/24 VDC) Series LECP1

Step Motor (Servo/24 VDC) Series LECPA

Controller (Step Data Input Type) Step Motor (Servo/24 VDC)

 Series LECP6
\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

How to Order

Compatible motor

Step motor
(Servo/24 VDC)

Number of step data (Points)

6	64		I/O cable length [m]	
Parallel I/O type d			Nil	Without cable
	N	NPN	1	1.5
	P	PNP	3	3
			5	5

Parallel I/O type
d Actuator part number Example: Enter "LEHZ10LK2-4" for the LEHZ10LK2-4AF-R16N1.

(Except cable specifications and actuator options)

- Option

Note) DIN rail is not included. Order it separately.

* When controller equipped type is selected when ordering the LE series, you do not need to order this controller.

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check that actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website. http://www.smcworld.com

Specifications

Basic Specifications

Item	Specifications
Compatible motor	Step motor (Servo/24 VDC)
Power supply ${ }^{\text {Note 1) }}$	Power voltage: 24 VDC $\pm 10 \%$ Current consumption: 3 A (Peak 5 A) Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)
Parallel output	13 outputs (Photo-coupler isolation)
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 5 or less Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range $\left.{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M 2]	Between the housing and SG terminal 50 (500 VDC)
Weight [g]	150 (Screw mounting) 170 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details. Note 3) Applicable to non-magnetizing lock.

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) Series LECP6

How to Mount

a) Screw mounting (LECP6 $\square \square-\square$) (Installation with two M4 screws)

b) DIN rail mounting (LECP6 $\square \square \mathrm{D}-\square$) (Installation with the DIN rail)

Hook the controller on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 57 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterwards.

Series LECP6

Dimensions

a) Screw mounting (LECP6 $\square \square-\square$)

b) DIN rail mounting (LECP6 $\square \square \mathrm{D}-\square$)

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) Series LECP6

Wiring Example 1

Power Supply Connector: CN1 *Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECP6 (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/BK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECP6

Wiring Example 2

Parallel I/O Connector: CN5

* When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CN5- \square). * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

Wiring diagram

LECP6N $\square \square-\square$ (NPN)

LECP6P $\square \square-\square$ (PNP)

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no. during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached (Turns on when the positioning or pushing is completed.)
SVRE	Outputs when servo is on
*ESTOP Note)	Not output when EMG stop is instructed
*ALARM Note)	Not output when alarm is generated

Note) Signal of negative-logic circuit ON (N.C.)

Series LECP6

Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

© : Need to be set.Step Data (Positioning)St Need to be adjusted as required.-: Setting is not required.		
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the target position
()	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0. (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Pushing)		© : Need to be set. O : Need to be adjusted as required.
Necessity	Item	Details
\bigcirc	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the pushing start position
\bigcirc	Position	Pushing start position
0	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set
0	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
\bigcirc	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the operation manual for the electric actuator.
\bigcirc	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and workpieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the operation manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Controller (Step Data Input Type)/Step Motor (Servo/24 vDc) Series LECP6

Signal Timing
Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

HOLD

* When the actuator is in the positioning range in the pushing operation, it does not stop even if HOLD signal is input.

[^8]
Series LECP6

Options: Actuator Cable, I/O Cable

Actuator cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

I/O cable

LEC-CN5- 1
 Cable length (L) [m]
 LEC - CN5 - Cable length (L) [m] | 1 | 1.5 |
| :---: | :---: |
| 3 | 3 |
| 5 | 5 |

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A C}^{8 B}$ /Cable length: $\mathbf{8 m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$
(* Produced upon receipt of order)

Compatible Controller/Driver

Step motor controller (Servo/24 VDC) Series LECP6
 Step motor driver (Pulse input type) Series LECPA

Hardware Requirements

OS	IBM PC/AT compatible machine running Windows ${ }^{\circledR}$ XP (32-bit), Windows ${ }^{\circledR} 7$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR}$ and Windows ${ }^{\circledR 7}$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version update information, http://www.smcworld.com

Screen Example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data.
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Return to ORIG
Test drive
Compulsory output

ALM	Status	
Status ALM Log record		
Active alarm display		
Alarm reset		

Gateway Unit
 Series LEC-G

How to Order

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LE series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products] When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Applicable Fieldbus protocols e-

MJ2	CC-Link Ver. 2.0
DN1	DeviceNet™ $^{\text {PR1 }}$
PROFIBUS DP	
EN1	EtherNet/IP ${ }^{\text {TM }}$

LEC-G MJ2

Note) DIN rail is not included.
Order it separately.

Branch connector LEC-CGD
 Branch connector

Specifications

Model			LEC-	GMJ2 \square	LEC-GDN1 \square	LEC-GPR1 \square	LEC-GEN1 \square
Communication specifications	Applicable system	Fieldbus		-Link	DeviceNet ${ }^{\text {™ }}$	PROFIBUS DP	EtherNet/IPTM
		Version Note 1)		r. 2.0	Release 2.0	V1	Release 1.0
	Communication speed [bps]		$\begin{array}{r} 156 \mathrm{k} / 6 \\ / 5 \mathrm{~N} \end{array}$	$\begin{aligned} & 25 \mathrm{k} / 2.5 \mathrm{M} \\ & \mathrm{M} / 10 \mathrm{M} \end{aligned}$	125 k/250 k/500 k	9.6 k/19.2 k/45.45 k/ $93.75 \mathrm{k} / 187.5 \mathrm{k} / 500 \mathrm{k} /$ 1.5 M/3 M/6 M/12 M	$10 \mathrm{M} / 100 \mathrm{M}$
	Configuration file ${ }^{\text {Note 2) }}$			-	EDS file	GSD file	EDS file
	I/O occupation area		4 stations occupied (8 times setting)	Input 896 points 108 words Output 896 points 108 words	Input 200 bytes Output 200 bytes	Input 57 words Output 57 words	Input 256 bytes Output 256 bytes
	Power supply for communication	Power supply voltage [[]$^{\text {Noie }}$ (${ }^{\text {a }}$		-	11 to 25 VDC	-	-
		Internal current consumption [mA]		-	100	-	-
	Communication connector specifications		Connector	(Accessory)	Connector (Accessory)	D-sub	RJ45
	Terminating resistor		Not	ncluded	Not included	Not included	Not included
Power supply voltage [V] ${ }^{\text {Note 6) }}$			$24 \mathrm{VDC} \pm 10 \%$				
Current consumption [mA]	Not connected to teaching box		200				
	Connected to teaching box		300				
EMG output terminal			30 VDC 1A				
Controller specifications	Applicable controllers		Series LECP6, Series LECA6				
	Communication speed [bps] ${ }^{\text {Note 3) }}$		$115.2 \mathrm{k} / 230.4 \mathrm{k}$				
	Max. number of connectable controllers Note 4)			12	8 Note 5)	5	12
Accessories			Power supply connector, communication connector			Power supply connector	
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Weight [g]			200 (Screw mounting), 220 (DIN rail mounting)				

Note 1) Please note that the version is subject to change.
Note 2) Each file can be downloaded from the SMC website, http://www.smcworld.com
Note 3) When using a teaching box (LEC-T1- \square), set the communication speed to 115.2 kbps .
Note 4) A communication response time for 1 controller is approximately 30 ms .
Refer to "Communication Response Time Guideline" for response times when several controllers are connected.
Note 5) For step data input, up to 12 controllers connectable.
Note 6) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Communication Response Time Guideline

Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit. For response time, refer to the graph below.

* This graph shows delay times between gateway unit and controllers. Fieldbus network delay time is not included.

Dimensions

Screw mounting (LEC-G $\square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

Series LEC-G

Dimensions

DIN rail mounting (LEC-G $\square \square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

* Mountable on DIN rail (35 mm)

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: EtherNet/IPTM

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions above for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Programless Controller Series LECP1

When controller equipped type is selected when ordering the LE series, you do not need to order this controller.

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

> The controller is sold as single unit after the compatible actuator is set.
> Confirm that the combination of the controller and the actuator is correct.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply ${ }^{\text {Note 1) }}$	Power supply voltage: 24 VDC $\pm 10 \%$, Max. current consumption: 3 A (Peak 5 A) Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7-segment display (Red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [MS]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Note 4) Applicable to non-magnetizing lock.

Series LECP1

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON : Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm : Red turns on Parameter setting : Red flashes
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch)
(4)	-	FG	Frame ground (Tighten the bolt with the nut when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	MANUAL	Manual forward button	Perform forward jog and inching.
(10)	MANUAL	Manual reverse button	Perform reverse jog and inching.
(11)	SPEED	Forward speed switch	16 forward speeds are available.
(12)	SPEED	Reverse speed switch	16 reverse speeds are available.
(13)		Forward acceleration switch	16 forward acceleration steps are available.
(14)	L	Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)

(Installation with two M4 screws)

2. Grounding

Tighten the bolt with the nut when mounting the ground wire as shown below.

\triangle Caution

- M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.
- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).

[^9]

Programless Controller Series LECP1

Dimensions

Screw mounting (LEC $\square 1 \square \square-\square$)

Series LECP1

Wiring Example 1

Power Supply Connector: CN1 * When you connect a CN1 power supply connector, please use the power supply cable (LEC-CK1-1). * Power supply cable (LEC-CK1-1) is an accessory.

CN1 Power Supply Connector Terminal for LECP1

Terminal name	Cablecolor	Function	Details
0V	Blue	Common supply (-)	M24V terminal/C24V terminal/BK RLS terminal are common (-).
M24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4 * When you connect a PLC, etc., to the CN4 parallel I/O connector, please use the I/O cable (LEC-CK4- \square).

-NPN

		Power supply 24 VDC for I/O signal
CN4		
COM +	1	1
COM-	2	
OUT0	3	Load-
OUT1	4	Load-
OUT2	5	Load -
OUT3	6	Load -
BUSY	7	Load
ALARM	8	Load
INO	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
INO to IN3	- Instruction to drive (input as a combination of INO to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	IN0
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart O: OFF ©: ON

Position number	IN3	IN2	IN1	IN0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Retun to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

PNP

Output Signal

Name	Details			
	Turns on when the positioning or pushing is completed. (Output is instructed in the combination of OUT0 to 3.) Example - (operation complete for position no. 3)			
	OUT3	OUT2	OUT1	
OFF	OFF	OUT0	ON	
BUSY	Outputs when the actuator is moving			
*ALARM Note)	Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUTO
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	-	\bigcirc
3	\bigcirc	\bigcirc	-	-
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	-	\bigcirc	\bigcirc
6	\bigcirc	-	-	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bullet	\bigcirc	\bigcirc	\bigcirc
9	\bullet	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bullet	\bigcirc	-	\bigcirc
11 (B)	\bullet	\bigcirc	-	\bullet
12 (C)	-	-	\bigcirc	\bigcirc
13 (D)	-	-	\bigcirc	-
14 (E)	\bullet	\bigcirc	\bigcirc	\bigcirc
Retun to origin	\bullet	\bullet	\bullet	\bullet

Signal Timing

* "*ALARM" is expressed as negative-logic circuit.

(2) Positioning Operation

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

[^10]
Series LECP1

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

Cable type

NiI	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{A}^{8 B}$ /Cable length: $\mathbf{8 m} \mathbf{m}, \mathbf{1 0 m}$, $\mathbf{1 5} \mathbf{m}, \mathbf{2 0 m}$
(* Produced upon receipt of order)

Options

[Power supply cable]

LEC-CK1-1

Terminal name	Covered color	Function
OV	Blue	Common supply (-)
M24V	White	Motor power supply (+)
C24V	Brown	Control power supply (+)
BK RLS	Black	Lock release (+)

[I/O cable]

Terminal no.	Insulation color	Dot mark	Dot color	Function	Terminal no.	Insulation color	Dot mark	Dot color	Function
1	Light brown	\square	Black	COM+	8	Gray	\square	Red	ALARM
2	Light brown	\square	Red	COM-	9	White	\square	Black	INO
3	Yellow	■	Black	OUT0	10	White	■	Red	IN1
4	Yellow	\square	Red	OUT1	11	Light brown	■ ■	Black	IN2
5	Light green	\square	Black	OUT2	12	Light brown	■ ■	Red	IN3
6	Light green	■	Red	OUT3	13	Yellow	■ ■	Black	RESET
7	Gray	\square	Black	BUSY	14	Yellow	■ ■	Red	STOP

[^11]
Step Motor Driver Series LECPA

How to Order

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LEH series and the LECPA series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECPA series (step motor driver), EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 80 for the noise filter set. Refer to the LECPA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Item	LECPA
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC $\pm 10 \%$ Maximum current consumption: 3 A (Peak 5 A) Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	5 inputs (Except photo-coupler isolation, pulse input terminal, COM terminal)
Parallel output	9 outputs (Photo-coupler isolation)
Pulse signal input	Maximum frequency: 60 kpps (Open collector), 200 kpps (Differential) Input method: 1 pulse mode (Pulse input in direction), 2 pulse mode (Pulse input in differing directions)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 1.5 or less (Open collector), 5 or less (Differential) Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M Ω]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	120 (Screw mounting), 140 (DIN rail mounting)

[^12] and driver should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

Series LECPA

How to Mount

Note) The space between the drivers should be 10 mm or more.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 76 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-2-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type driver afterwards.

Dimensions

a) Screw mounting (LECPA $\square \square-\square$)

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$)

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECPA (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/ BK RLS terminal are common $(-)$.
M24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPA

Series LECPA

Wiring Example 2

Parallel I/O Connector: CN5 * When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CN5- \square).
LECPAN $\square \square$ - \square (NPN)

Note 1) For pulse signal wiring method, refer to "Pulse Signal Wiring Details". Note 2) Output when the power supply of the driver is ON. (N.C.)

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM -	Connects the power supply 0 V for input/output signal
SETUP	Instruction to return to origin
RESET	Alarm reset
SVON	Servo ON instruction
CLR	Deviation reset
TL	Instruction to pushing operation

Pulse Signal Wiring Details

- Pulse signal output of positioning unit is differential output

- Pulse signal output of positioning unit is open collector output

Pulse signal power supply

Note) Connect the current limit resistor R in series to correspond to the pulse signal voltage.

Pulse signal power supply voltage	Current limit resistor R specifications
$24 \mathrm{VDC} \pm 10 \%$	$3.3 \mathrm{k} \Omega \pm 5 \%$ (0.5 W or more)
$5 \mathrm{VDC} \pm 5 \%$	$390 \Omega \pm 5 \%$ (0.1 W or more)

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

Positioning Operation

Pushing Operation

Note) If pushing operation is stopped when there is no pulse deviation, the moving part of the actuator may pulsate.

Alarm Reset

* "*ALARM" is expressed as negative-logic circuit.

Series LECPA

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

Cable type ${ }^{-}$

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A}^{8 B} /$ Cable length: $\mathbf{8 m} \mathbf{m} \mathbf{1 0 ~ m , 1 5 m , 2 0 ~ m}$ (* Produced upon receipt of order)

Driver side

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
,		Shield	Cable color	Connector D terminal no.
Vcc	B-4	-i	Brown	12
GND	A-4	1	Black	13
$\overline{\mathrm{A}}$	B-5	$1:$	Red	7
A	A-5		Black	6
\bar{B}	B-6	+	Orange	9
B	A-6		Black	8

Step Motor Driver Series LECPA

Options

[I/O cable]

* Pulse input usable only with differential. Only 1.5 m cables usable with open collector.

Pin no.	Insulation color	Dot mark	Dot color
1	Light brown	\square	Black
2	Light brown	\square	Red
3	Yellow	\square	Black
4	Yellow	\square	Red
5	Light green	\square	Black
6	Light green	\square	Red
7	Gray	\square	Black
8	Gray	\square	Red
9	White	\square	Black
10	White	\square	Red
11	Light brown	$\square \square$	Black

Pin no.	Insulation color	Dot mark	Dot color
12	Light brown	■	Red
13	Yellow	$\square \square$	Black
14	Yellow	$\square \square$	Red
15	Light green	$\square \square$	Black
16	Light green	$\square \square$	Red
17	Gray	■	Black
18	Gray	\square	Red
19	White	■ ■	Black
20	White	$\square \square$	Red
$\begin{array}{\|c} \hline \text { Round teminal } \\ 0.5-5 \end{array}$	Green		

[Noise filter set]

Step Motor Driver (Pulse Input Type)

LEC-NFA

Contents of the set: 2 noise filters
(Manufactured by WURTH ELEKTRONIK: 74271222)

How to Order

(1) Controller setting software (CD-ROM)
(2) Communication cable
(3) USB cable
(Cable between the PC and the conversion unit)

Compatible Controllers/Driver

Step motor controller (Servo/24 VDC)	Series LECP6
Servo motor controller (24 VDC)	Series LECA6
Step motor driver (Pulse input type)	Series LECPA

Hardware Requirements

OS	IBM PC/AT compatible machine running Windows ${ }^{\circledR}$ XP (32-bit), Windows ${ }^{\circledR} 7$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR}$ and Windows ${ }^{\circledR 7}$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version update information, http://www.smcworld.com

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Series LEC
 Teaching Box/LEC-T1

RoHS

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [${ }^{\circ} \mathbf{C}$]	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Menu Operations Flowchart

Menu	Data
Data	Step data no.
Monitor	Setting of two items selected below
Jog	Ver. 1.**:
Test	Position, Speed, Force, Acceleration, Deceleration
ALM	Ver. 2.**:
TB setting	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD,

Series LEC

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive Note 1) (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output) Note 2)
Monitor	- Drive monitor - Output signal monitor Note 2) - Input signal monitor Note 2) - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the driver which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to driver Loads the data which is saved in the teaching box to the driver which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Note 1) Not compatible with the LECPA.
Note 2) The following signals are not compatible with the LECPA.
Input: CLR, TL
Output: TLOUT

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
\triangle Warning:
Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk
\triangle Danger : which, if not avoided, will result in death or serious injury.

© Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
```
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
    ISO 4413: Hydraulic fluid power - General rules relating to systems.
    IEC 60204-1: Safety of machinery - Electrical equipment of machines.
            (Part 1: General requirements)
    ISO 10218-1: Manipulating industrial robots - Safety.
    etc.
```


\triangle Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

Electric gripper 3-finger type LEHS series is added.

* How to order for the electric gripper 2-finger type LEHZ/LEHF series is changed.
* Number of pages from 60 to 72

Edition D * Electric gripper 2-finger type/with dust cover LEHZJ series is added. * Programless controller LECP1 series is added * Number of pages from 72 to 84

* Pulse input type LECPA series is added.
* Gateway unit LEC-G series is added.
* Number of pages from 84 to 104

SMC Corporation

Akihabara UDX 15F,
4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN
Phone: 03-5207-8249 Fax: 03-5298-5362
http://www.smcworld.com
© 2013 SMC Corporation All Rights Reserved
Specifications are subject to change without prior notice

[^0]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^1]: \triangle Caution
 [CE-compliant products]
 EMC compliance was tested by combining the electric actuator LEH series and the controller LEC series.
 The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole. [UL-compliant products]
 When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

[^2]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^3]: * The dust cover is a consumable part. Please replace as necessary.

[^4]: * Pushing force is one of the values of step data that is input into the controller.

[^5]: * Pushing force is one of the values of step data that is input into the controller.

[^6]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^7]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^8]: * "*ALARM" is expressed as negative-logic circuit.

[^9]: Size
 Size width \quad L: 2.0 to $2.4[\mathrm{~mm}]$
 End thickness $\mathbf{W}: 0.5$ to $0.6[\mathrm{~mm}]$

[^10]: * "*ALARM" is expressed as negative-logic circuit.

[^11]: * Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

[^12]: Note 1) Do not use the power supply of "inrush current prevention type" for the driver power supply. When conformity to UL is required, the electric actuator

