Air Slide Table/Long Stroke Type

Series MXY
 $\varnothing 6, \varnothing 8, \varnothing 12$

Use of linear guide provides rigid, The sifde table comes with a builtin

Rigid, compact, and lightweight

Compact design with higher allowable moment compared to MXY8/MXW8

Model	Height mm	Width mm	Mass g	Allowable moment N$\cdot \mathrm{m}$	
Pitch, Yaw	Roll				
MXY8-50	25	47	420	5.7	13
MXW8-50	30	49	610	5	3
MXY/MXW	0.8 times	0.95 times	0.7 times	1.14 times	4 times

*Values for 50 mm stroke
Positioning pin hole
Improved mounting repeatability of the workpiece and body <Bottom view of body>
\qquad

compact, and lightweighit design. magneticolly coupled rodless cylinder.

Stroke adjuster

The stroke adjuster does not protrude from the mounting surface of the workpiece mounting surface, allowing high flexibility in workpiece mounting.

Workpiece mounting surface

Using lock plates to securely lock the adjustment bolt with minimal force.

Changing the mounting position of the switch rail, which also used as an air passage can change the direction of the centralized piping.

Individual

- X \square

Conditions and Calculation Flow for Selection

Model Selection Step

Operating Conditions

Enumerate the operating conditions considering the mounting position and workpiece configuration.

- Model to be used
- Type of cushion
- Mounting orientation
- Average speed Va (mm / s)
- Load mass W (kg)
- Overhang Ln (mm)

Cylinder: MXY8-100

Cushion: Rubber stopper
Mounting: Horizontal wall mounting
Average speed: $\mathrm{Va}=300[\mathrm{~mm} / \mathrm{s}]$
Load mass: $\mathrm{W}=0.2[\mathrm{~kg}]$
$\mathrm{L} 2=40 \mathrm{~mm}$
$\mathrm{L} 3=50 \mathrm{~mm}$
$V=1.4 \times 300=420$

Confirm that $\mathrm{V}=420$ and $\mathrm{W}=0.2$ do not
exceed the values in Graph (1).

Applicable because
it does not exceed
the value in Graph (1)

Load Factor

3-1 Load Factor of Static Moment

Find the static moment $\mathrm{M}(\mathrm{N} \cdot \mathrm{m})$.
Find the allowable static moment Ma (N.m).

Find the load factor α_{1} of the static moment.
$M=W \times 9.8(\mathrm{Ln}+\mathrm{An}) / 1000$
Corrected value of moment center position distance An: Table (1)

Pitch, Yaw moment: Graph (2)
Roll moment: Graph (3)
$\alpha_{1}=M / M a$

3-2 Load Factor of Dynamic Moment

Examine Mr.
$\mathrm{Mr}=0.2 \times 9.8(40+15.5) / 1000=0.1$
A2 $=15.5$
Obtain Mar = 13 from $\mathrm{Va}=300$ in Graph (3).
$\alpha_{1}=0.1 / 13=0.008$

Find the dynamic moment $\mathrm{Me}(\mathrm{N} \cdot \mathrm{m})$.

Find the allowable dynamic moment Mea ($\mathrm{N} \cdot \mathrm{m}$)

Find the load factor α_{2} of the dynamic moment.
$M e=1 / 3$. We $\times 9.8(L n+A n) / 1000$
Mass equivalent to impact $\mathrm{We}=\delta \cdot \mathrm{W} \cdot \mathrm{V}$
δ : Bumper coefficient
Rubber stopper screw: 4/100
Shock absorber: 1/100
Metal stopper screw: 16/100
Corrected value of moment center position
distance An:Table (1)

Pitch, yaw moment: Graph (2)
$\alpha_{2}=\mathrm{Me} / \mathrm{Mea}$

Examine Mep.
Мер $=1 / 3 \times 3.36 \times 9.8 \times(40+15.5) / 1000=0.61$

$$
W e=4 / 100 \times 0.2 \times 420=3.36
$$

$$
\mathrm{A}^{2}=15.5
$$

Obtain Meap $=4.2$ from $\mathrm{V}=420$ in Graph (2).
$\alpha_{2}=0.61 / 4.2=0.15$

Examine Mey.
V mm/s
Mey $=1 / 3 \times 3.36 \times 9.8 \times(50+19) / 1000=0.76$
$\mathrm{We}=3.36$
$A^{3}=19$
Obtain Meay $=4.2$ from $V=420$ in Graph (2).
$\alpha_{2}{ }^{\prime}=0.76 / 4.2=0.18$

$\alpha_{1}+\alpha_{2}+\alpha_{2}=$

Applicable because
$0.008+0.15+0.18=0.34<1$

Use is possible if the sum of the load factors does not

$$
\alpha_{1}+\alpha_{2}<1
$$

Fig. (1) Overhang: Ln (mm), Correction Value of Moment Center Position Distance: An (mm)

	Pitch moment	Yaw moment	Roll moment
			-

Note) Static moment: Moment generated by gravity
Dynamic moment: Moment generated by impact when colliding with stopper

Graph (2) Allowable Moment Pitch Moment: Map, Meap Yaw Moment: May, Meay

Note) Use the average speed when calculating static moment.
Use the collision speed when calculating dynamic moment.
Table (1) Correction Value of Moment Center
Position Distance: An (mm)

Model	Corrected value of moment center position distance (Refer to Figure 2.)		
	A_{1}	A 2	$\mathrm{~A}_{3}$
MXY6	16	14	15
MXY8	20	15.5	19
MXY12	26	23.5	25

Graph (3) Allowable Moment Roll Moment: Mar

Table (2) Max. Allowable Load Mass: Wmax (kg)

Model	Max. allowable load mass
MXY6	0.6
MXY8	1
MXY12	2

The above value represents the maximum value for each allowable load mass. For the maximum allowable load mass for each piston speed, please refer to Graph (1).

Table (3) Maximum Allowable Moment: Mmax (N.m)

Model	Pitch/Yaw moment: Mpmax/Mymax	Roll moment: Mrmax
MXY6	2.6	6.2
MXY8	5.7	13
MXY12	12	28

The above value represents the maximum value of allowable moment. For the maximum allowable moment for each piston speed, please refer to Graph (2) and (3).

Symbol

Symbol	Definition	Unit	Symbol	Definition	Unit
An ($\mathrm{n}=1$ to 3)	Corrected value of moment center position distance	mm	F	Allowable static load	N
Ln ($\mathrm{n}=1$ to 3)	Overhang	mm	V	Collision speed	mm / s
M (Mp, My, Mr)	Static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	Va	Average speed	mm / s
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	W	Load mass	kg
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$	Wa	Allowable load mass	kg
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$	Wmax	Max. allowable load mass	kg
Mmax (Mpmax, Mymax, Mrmax)	Max. allowable moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	α	Load factor	-

Air Slide Table

Long Stroke Type Series MXY

ø6, ø8, ฮ12

How to Order

The auto switch cannot be mounted on the one side centralized piping type without switch rail (N).

Applicable Auto Switch/Refer to pages 1719 to 1827 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)				Pre-wired connector	Applicable load	
					DC		AC	Perpendicular	In-line	$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { (L) } \end{gathered}$	$\begin{array}{\|c} 5 \\ (Z) \\ \hline \end{array}$			
	-	Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay PLC
				3-wire (PNP)				M9PV	M9P	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		M9BV	M9B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Diagnostic indication (2-color indication)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				M9PWV	M9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		M9BWV	M9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	-	Grommet	Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	-	\bigcirc	-	-	IC circuit	-
				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	-	\bigcirc	-	-	-	Relay PLC
			No				100 V or less	A90V	A90	\bigcirc	-	\bigcirc	-	-	IC circuit	

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots . .$. Nil (Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order.

$1 \mathrm{~m} \cdots \ldots$.	M
$3 \mathrm{~m} \cdots \ldots \ldots$.	(Example) M9NWM
$5 \mathrm{~m} \cdots \cdots . . .$.	(Example) M9NWL
(Example) M9NWZ	

* Refer to page 225 for applicable auto switches in addition to those listed above.
* For details on auto switches with a pre-wired connector, refer to pages 1784 and 1785.
* Auto switches are shipped together (not assembled).

Air Slide Table Long Stroke Type

Specifications

Note) The shock absorber service life is different from that of the MXY cylinder depending on operating conditions. Refer to the Specific Product Precautions for the replacement period.

Theoretical Output
(N)

Cylinder bore (mm)	Piston area $\left(\mathrm{mm}^{2}\right)$	Operating pressure (MPa)				
	0.2	0.3	0.4	0.5	0.55	
$\mathbf{6}$	28	6	8	11	14	15
$\mathbf{8}$	50	10	15	20	25	28
$\mathbf{1 2}$	113	23	34	45	57	62

Standard Stroke
(mm)

Magnetic
Holding Force

Model	Standard stroke			
MXY6	$50,100,150,200$			
MXY8	$50,100,150,200,250,300$			
MXY12	$50,100,150,200,250,300,350,400$	\quad	Model	Magnetic holding force
:---:	:---:			
MXY6	19			
MXY8	34			
MXY12	77			

Mass
(g)

Model	One side centralized piping, with switch rail								One side centralized piping, without switch rail							
	Stroke (mm)								Stroke (mm)							
	50	100	150	200	250	300	350	400	50	100	150	200	250	300	350	400
MXY6	270	330	390	450	-	-	-	-	230	280	330	380	-	-	-	-
MXY8	420	510	600	690	780	870	-	-	410	480	550	620	690	760	-	-
MXY12	930	1060	1190	1320	1450	1580	1710	1840	910	1020	1130	1240	1350	1460	1570	1680

Series MXY

The graphs below show the table displacement when the static moment
Table Deflection (Reference Values)

Table deflection due to pitch moment load
Displacement at " A " when load is applied " F "

L dimension	mm
MXY6	100
MXY8	100
MXY12	140

Pitch moment

Table deflection due to yaw moment load
Displacement at " A " when load is applied " F "

L dimension	mm
MXY6	100
MXY8	100
MXY12	140

Yaw moment

Table deflection due to roll moment load
Displacement at "A" when load is applied " F "

L dimension	mm
MXY6	100
MXY8	100
MXY12	140

Roll moment

Air Slide Table Long Stroke Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rail	Stainless steel	Heat treatment, electroless nickel plated
$\mathbf{2}$	Guide block	Stainless steel	Heat treatment, electroless nickel plated
$\mathbf{3}$	End plate	Aluminium alloy	Hard anodized
$\mathbf{4}$	Body	Aluminium alloy	Hard anodized
$\mathbf{5}$	Tube	Stainless steel	
$\mathbf{6}$	Cover	Resin	
$\mathbf{7}$	Scraper	Stainless steel, NBR	
$\mathbf{8}$	Shaft	Stainless steel	
9	Piston	Brass	Electroless nickel plated
$\mathbf{1 0}$	Wear ring A	Resin	
11	Wear ring B	Resin	
12	Spacer	Brass	Electroless nickel plated
$\mathbf{1 3}$	Magnet A	-	Nickel plated
$\mathbf{1 4}$	Magnet B	-	Nickel plated
15	Yoke A	Steel	Electroless nickel plated
$\mathbf{1 6}$	Yoke B	Steel	Electroless nickel plated
$\mathbf{1 7}$	Return guide	Resin	
18	End cap	Resin	
19	Stud	Stainless steel	Heat treatment

No.	Description	Material	Note	
20	Stopper screw	Stainless steel	Heat treatment	
21	External magnet fix plate	Stainless steel		
22	Cylinder scraper	NBR		
23	Lock plate	Stainless steel		
	Adjustment bolt	Steel	Nickel plated	Rubber stopper
24	Adjustment bolt	Stainless steel		Metal stopper
	Shock absorber	-		Shock absorber
25	Steel ball	Copper		
26	Piston seal	NBR		
27	O-ring	NBR		
28	O-ring	NBR	Rubber	r stopper
29	Adjustment bumper	Polyurethane		
30	Plug	Brass	Electroless	nickel plated
31	Switch rail	Aluminium alloy	Hard	anodized
32	Stud	Brass	Electroless	nickel plated
33	Gasket	NBR		
34	Magnet	-	Electroless	nickel plated
35	Magnet holder	Steel		
36	O-ring	NBR		

Replacement Parts

Bore size (mm)	Kit no.	Contents
$\mathbf{6}$	MXY6-PS	Set consists of 2 pieces of above
$\mathbf{8}$	MXY8-PS	
$\mathbf{1 2}$	MXY12-PS	

Replacement Parts: Grease Pack

Grease pack part no.
GR-S-005 $(5 \mathrm{~g})$
GR-S-010 $(10 \mathrm{~g})$
GR-S-020 $(20 \mathrm{~g})$
GR-S-050(50g)

D- \square

Dimensions

Model	F	FH	FL	FW	H	HA	HR	J	JH	L	LA	M	MM	MA	MB
MXY6	20	3	12	24	21.5	18	0.5	60	8.5	32	28	M3 x 0.5	4	$\begin{gathered} \text { M5 x } 0.8 \\ \text { (Width across flats 2.5) } \end{gathered}$	2
MXY8	25	4	14	30	25	20.9	3.5	70	10	40	29	M 4×0.7	5	M6 x 1 (Width across flats 3)	2.5
MXY12	32	5	18	40	36	30.9	8.5	86	15	52	31	M5 x 0.8	6	$\begin{gathered} \mathrm{M} 8 \times 1 \\ \hline \text { (Width across flats 4) } \\ \hline \end{gathered}$	3

Model	\mathbf{P}	$\mathbf{P H}$	PL	PR	\mathbf{Q}	$\mathbf{Q W}$	\mathbf{R}	RH	RL	\mathbf{T}	TB	TH	W	WD	WE	WR	Z
MXY6	13	7	9	11	60	12	3 (depth 3)	3 (depth 3)	4	2.9	5.1	2.5	30	5	25.5	20	88
MXY8	19	7	10	13	70	15	3 (depth 3)	3 (depth 3)	4	3.4	6.1	3	38	6.5	32	25	98
MXY12	29	7	13	18	90	21	4 (depth 4)	4 (depth 4)	5	4.5	7.8	4	50	8.5	42	33	114

Model	n								QL							
Stroke	50	100	150	200	250	300	350	400	50	100	150	200	250	300	350	400
MXY6	2	3	3	4	-	-	-	-	39	34	59	54	-	-	-	-
MXY8	2	2	3	4	5	5	-	-	39	64	54	44	34	59	-	-
MXY12	2	2	3	3	4	4	5	5	37	62	42	67	47	72	52	77

Auto Switch Proper Mounting Position (Detection at Stroke End)

Reed Auto Switch
D-A90(V), D-A93(V), D-A96(V) (mm)

Model	Mounting		Auto switch operating range
MXY6	A	54	
	B	34	
MXY8	A	59	
	B	39	
MXY12	A	67	
	B	47	

Solid State Auto Switch
D-M9B(V), D-M9N(V), D-M9P(V)
(mm)

Model	Mounting		Auto switch operating range
MXY6	\mathbf{A}	50	3
	\mathbf{B}	38	
MXY8	\mathbf{A}	55	3.5
	\mathbf{B}	43	
MXY12	\mathbf{A}	63	3
	\mathbf{B}	51	

2-Color Display Solid State Auto Switch D-M9BW(V), D-M9NW(V), D-M9PW (mm)

Model	Mounting		Auto switch operating range
MXY6	\mathbf{A}	50	3
	\mathbf{B}	38	
MXY8	\mathbf{A}	55	3.5
	\mathbf{B}	43	
MXY12	\mathbf{A}	63	3
	\mathbf{B}	51	

* Adjust the auto switch after confirming the operating conditions in the actual setting.

Lead wire entries outside

MXY

Auto Switch Mounting

\triangle Caution

Auto Switch Mounting Tool

- When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm .

Tightening Torque

Tightening Torque of Auto Switch Mounting Screw (N.m)

Auto switch model	Tightening torque
D-A9 $\square(\mathbf{V})$	0.10 to 0.20
D-M9 $\square(V)$ D-M9 $\square \mathbf{W}(V)$	0.05 to 0.15

Series MXY Specific Product Precautions 1

Be sure to read before handling.
Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Selection

\triangle Caution

1. Use a load within a range that does not exceed the operating limit.
Select models based on the maximum load weight and the allowable moment. Refer to model selection on pages 217 to 219 for detailed methods. If operated beyond the operating limit, the eccentric load applied to the guide section will be excessive. This can have an adverse effect on service life due to vibration in the guide unit and loss of accuracy, etc.
2. When performing intermediate stops with an external stopper, employ measures to prevent lurching.
If lurching occurs damage can result. When making a stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table, then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.
3. In vertical operation, it is not possible to stop the piston at an intermediate position using a closed center solenoid valve, etc.
In vertical operation, it is not possible to stop the piston at an intermediate position using a closed center solenoid valve because it can cause dislocation of the magnet coupling. The only available option in such cases is use of an external stopper for an intermediate stop.
4. When stopping the piston using a closed center solenoid valve in horizontal operation, do not allow the kinetic energy exceed the allowable kinetic energy.
When stopping the piston using a closed center solenoid valve in horizontal operation, do not allow the kinetic energy of the load to exceed the values shown below. If the allowable value is exceeded, it can cause dislocation of the magnet coupling.

Model	Allowable kinetic energy for intermediate stop (J)
MXY6	0.007
MXY8	0.014
MXY12	0.047

5. Do not operate in such a way that excessive external forces or impact forces are applied to the product.
This can cause damage.
6. Be careful in an application which requires precision in the middle of a stroke.
If straightness is required in the middle of a stroke, fix the entire rail mounting surface on the base.

Mounting
 \triangle Caution

1. Do not scratch or gouge the mounting surfaces of the body, table and end plate.
This can cause loss of parallelism in the mounting surfaces, vibration in the guide unit and increased operating resistance, etc.
2. Do not scratch or gouge the transfer surfaces of the rail and guide.
This can cause vibration and increased operating resistance, etc.

3. Do not apply strong impacts or excessive moment when mounting workpieces.
Application of external forces greater than the allowable moment can cause vibration in the guide unit and increased operating resistance, etc.
4. Ensure that the parallelism of the mounting surface is 0.02 mm or less.
Poor parallelism of the workpiece mounted on the body, the base, and other parts can cause vibration of the guide unit and increased operating resistance, etc.

Mounting

© Caution

5. For connection to a load that has an external support or guide mechanism, select an appropriate connection method and perform careful alignment.
6. Keep away objects which can be influenced by magnets.
A magnet is built inside the body or, in case of a type with auto switch, on the side of the guide lock. Please keep away magnetic disks, cards or tapes. Otherwise, the data can be deleted.

7. Do not attach magnets to the rail and guide block.
Since the body and table (guide block) are made of a magnetic substance, it could become magnetized if touched by a magnet, etc. This could cause auto switch malfunction.

Series MXY Specific Product Precautions 2

Be sure to read before handling.
Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Mounting

© Caution

8. When mounting the body, use screws of an appropriate length and do not exceed the maximum tightening torque.
Tightening with a torque above the limit could cause malfunction. Whereas tightening insufficiently could result in misalignment or dropping.

9. Be careful not to bruise the outer surface of the cylinder tube.
If can damage the scraper and wear ring and result in malfunction.
10. Make sure that the magnet coupling is in position when operating.
In case it is displaced, please return it to the right position by pushing the external mover by hand (or pushing the piston mover with air pressure).
11. In vertical operation, be careful about dislocation of the magnet coupling.
Note that the mover may drop off due to dislocation of the magnet coupling if pressure or load beyond the specification is applied.
12. The positioning holes on the top surface of the guide block and those on the bottom of the rail are not aligned.
These holes are used when remounting the same product after having removed it for maintenance.

Operating Environment

\triangle Caution

1. Do not use in environments where there is direct exposure to liquids such as cutting oil. Operation in environments where the body is exposed to cutting oil, coolant or oil mist can cause vibration, increased operating resistance and air leakage, etc.
2. Do not use in environments where there is direct exposure to foreign matter such as dust, dirt, chips and spatter.
This can cause vibration, increased operating resistance and air leakage, etc.
Do not use the product in the following conditions.
3. Provide shade in locations exposed to direct sunlight.
4. Block off sources of heat located near by.
When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover, etc.

Operating Environment \triangle Caution

5. Do not use in locations where vibration or impact occurs.
Do not use the product in such an environment as is can result in damage or malfunction.
6. Be careful about the corrosion resistance of the linear guide.
Be careful the rail and guide block use martensitic stainless steel, which is inferior to austenitic stainless steel in terms of corrosion resistance. Rust may result especially in an environment that allows water drops from condensation to stay on the surface.

Handling of Adjuster Options

Stroke adjuster

\triangle Caution

1. Do not replace the special adjusting bolt with other bolts.
This may cause looseness and damage due to impact forces, etc.
2. Use the tightening torque in the table below for the lock nut.
Insufficient torque will cause a decrease in the positioning accuracy.

Service Life and Replacement Period of Shock Absorber

\triangle Caution

1. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million cycles RB08 $\square \square$

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to $25^{\circ} \mathrm{C}$). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

MXH

Series MXY Specific Product Precautions 3

Be sure to read before handling.

Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Stroke Adjustment
 \triangle Caution

1. Adjustment method

Loosen the 2 lock plate fixing bolts (or shock absorbers) and rotate the adjustment bolt (or shock absorber) to adjust the stroke. Then tighten the lock plate fixing bolts evenly to secure the adjustment bolt (or shock absorber). Be careful not to tighten the lock plate adjusting bolts too firmly.

Model	Tightening torque of lock plate fixing bolt
MXY6	$0.1 \mathrm{~N} \cdot \mathrm{~m}$
MXY8	$0.2 \mathrm{~N} \cdot \mathrm{~m}$
MXY12	$0.4 \mathrm{~N} \cdot \mathrm{~m}$

The lock plate may bend slightly due to tightening of the lock plate fixing bolts but it will not affect the adjustment bolt or shock absorber that has been secured

2. Adjustment range

Adjust the stroke within the range where the stopper or shock absorber works effectively. As a guideline, keep the stroke within the range where the L dimension in the figure below is larger than the value in the table. If the stroke exceeds this range, the guide lock will bump into the end plate, affecting the life time.

Model	L
MXY6	2 mm
MXY8	2 mm
MXY12	2.5 mm

Rubber stopper screw

Metal stopper screw

How to Change Concentrated Piping
The piping is concentrated on the left side at the time of shipment. To switch to the right side piping, follow the steps below.

1. Loosen the 2 studs to remove the switch rail.

2. Change the position of the 0 ring shown in the figure.

3. Fasten the stud onto the tap at the right side of the end plate and secure the switch rail.

* Stud fastening: After a temporary tightening, tighten an additional $1 / 4$ turn.

At the time of shipment

Disassembly and Maintenance

© Warning

Be careful the magnets have a large absorption force.
Please pay enough attention when the external mover and piston mover are removed from the cylinder tube for maintenance, etc. Because the magnet mounted on each mover has a large adsorption force. Please refer to the disassembly instructions when disassembling the product.

© Caution

1. Be careful if the external mover is removed in the normal condition, it will directly absorb the piston mover.
When removing the external mover or piston mover, first force the magnet coupling to go off the position to disable the holding power and then remove them separately. If they are removed in the normal condition, the magnets will directly absorb each other and will not go apart.
2. Never disassemble the magnet constructions
(piston mover and external mover).
If can cause a drop of the holding power or malfunction.
